|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | + |
| 10 | +import torch |
| 11 | +from executorch.backends.test.suite.flow import TestFlow |
| 12 | + |
| 13 | +from executorch.backends.test.suite.operators import ( |
| 14 | + dtype_test, |
| 15 | + operator_test, |
| 16 | + OperatorTest, |
| 17 | +) |
| 18 | + |
| 19 | + |
| 20 | +class Model(torch.nn.Module): |
| 21 | + def __init__( |
| 22 | + self, |
| 23 | + input_size=64, |
| 24 | + hidden_size=32, |
| 25 | + num_layers=1, |
| 26 | + bias=True, |
| 27 | + batch_first=True, |
| 28 | + dropout=0.0, |
| 29 | + bidirectional=False, |
| 30 | + ): |
| 31 | + super().__init__() |
| 32 | + self.lstm = torch.nn.LSTM( |
| 33 | + input_size=input_size, |
| 34 | + hidden_size=hidden_size, |
| 35 | + num_layers=num_layers, |
| 36 | + bias=bias, |
| 37 | + batch_first=batch_first, |
| 38 | + dropout=dropout, |
| 39 | + bidirectional=bidirectional, |
| 40 | + ) |
| 41 | + |
| 42 | + def forward(self, x): |
| 43 | + return self.lstm(x)[0] # Return only the output, not the hidden states |
| 44 | + |
| 45 | + |
| 46 | +@operator_test |
| 47 | +class LSTM(OperatorTest): |
| 48 | + @dtype_test |
| 49 | + def test_lstm_dtype(self, flow: TestFlow, dtype) -> None: |
| 50 | + self._test_op( |
| 51 | + Model(num_layers=2).to(dtype), |
| 52 | + ((torch.rand(1, 10, 64) * 10).to(dtype),), # (batch=1, seq_len, input_size) |
| 53 | + flow, |
| 54 | + ) |
| 55 | + |
| 56 | + @dtype_test |
| 57 | + def test_lstm_no_bias_dtype(self, flow: TestFlow, dtype) -> None: |
| 58 | + self._test_op( |
| 59 | + Model(num_layers=2, bias=False).to(dtype), |
| 60 | + ((torch.rand(1, 10, 64) * 10).to(dtype),), |
| 61 | + flow, |
| 62 | + ) |
| 63 | + |
| 64 | + def test_lstm_feature_sizes(self, flow: TestFlow) -> None: |
| 65 | + self._test_op( |
| 66 | + Model(input_size=32, hidden_size=16), |
| 67 | + (torch.randn(1, 8, 32),), # (batch=1, seq_len, input_size) |
| 68 | + flow, |
| 69 | + ) |
| 70 | + self._test_op( |
| 71 | + Model(input_size=128, hidden_size=64), |
| 72 | + (torch.randn(1, 12, 128),), |
| 73 | + flow, |
| 74 | + ) |
| 75 | + self._test_op( |
| 76 | + Model(input_size=256, hidden_size=128), |
| 77 | + (torch.randn(1, 6, 256),), |
| 78 | + flow, |
| 79 | + ) |
| 80 | + self._test_op( |
| 81 | + Model(input_size=16, hidden_size=32), |
| 82 | + (torch.randn(1, 5, 16),), |
| 83 | + flow, |
| 84 | + ) |
| 85 | + |
| 86 | + def test_lstm_batch_sizes(self, flow: TestFlow) -> None: |
| 87 | + self._test_op( |
| 88 | + Model(), |
| 89 | + (torch.randn(8, 10, 64),), |
| 90 | + flow, |
| 91 | + ) |
| 92 | + self._test_op( |
| 93 | + Model(), |
| 94 | + (torch.randn(32, 10, 64),), |
| 95 | + flow, |
| 96 | + ) |
| 97 | + self._test_op( |
| 98 | + Model(), |
| 99 | + (torch.randn(100, 10, 64),), |
| 100 | + flow, |
| 101 | + ) |
| 102 | + |
| 103 | + def test_lstm_seq_lengths(self, flow: TestFlow) -> None: |
| 104 | + self._test_op( |
| 105 | + Model(), |
| 106 | + (torch.randn(1, 5, 64),), |
| 107 | + flow, |
| 108 | + ) |
| 109 | + self._test_op( |
| 110 | + Model(), |
| 111 | + (torch.randn(1, 20, 64),), |
| 112 | + flow, |
| 113 | + ) |
| 114 | + self._test_op( |
| 115 | + Model(), |
| 116 | + (torch.randn(1, 50, 64),), |
| 117 | + flow, |
| 118 | + ) |
| 119 | + |
| 120 | + def test_lstm_batch_first_false(self, flow: TestFlow) -> None: |
| 121 | + self._test_op( |
| 122 | + Model(batch_first=False), |
| 123 | + (torch.randn(10, 1, 64),), # (seq_len, batch=1, input_size) |
| 124 | + flow, |
| 125 | + ) |
| 126 | + |
| 127 | + def test_lstm_num_layers(self, flow: TestFlow) -> None: |
| 128 | + self._test_op( |
| 129 | + Model(num_layers=2), |
| 130 | + (torch.randn(1, 10, 64),), |
| 131 | + flow, |
| 132 | + ) |
| 133 | + self._test_op( |
| 134 | + Model(num_layers=3), |
| 135 | + (torch.randn(1, 10, 64),), |
| 136 | + flow, |
| 137 | + ) |
| 138 | + |
| 139 | + def test_lstm_bidirectional(self, flow: TestFlow) -> None: |
| 140 | + self._test_op( |
| 141 | + Model(bidirectional=True), |
| 142 | + (torch.randn(1, 10, 64),), |
| 143 | + flow, |
| 144 | + ) |
| 145 | + |
| 146 | + def test_lstm_with_dropout(self, flow: TestFlow) -> None: |
| 147 | + # Note: Dropout is only effective with num_layers > 1 |
| 148 | + self._test_op( |
| 149 | + Model(num_layers=2, dropout=0.2), |
| 150 | + (torch.randn(1, 10, 64),), |
| 151 | + flow, |
| 152 | + ) |
| 153 | + |
| 154 | + def test_lstm_with_initial_states(self, flow: TestFlow) -> None: |
| 155 | + # Create a model that accepts initial states |
| 156 | + class ModelWithStates(torch.nn.Module): |
| 157 | + def __init__(self): |
| 158 | + super().__init__() |
| 159 | + self.lstm = torch.nn.LSTM( |
| 160 | + input_size=64, |
| 161 | + hidden_size=32, |
| 162 | + num_layers=2, |
| 163 | + batch_first=True, |
| 164 | + ) |
| 165 | + |
| 166 | + def forward(self, x, h0, c0): |
| 167 | + return self.lstm(x, (h0, c0))[0] # Return only the output |
| 168 | + |
| 169 | + batch_size = 1 |
| 170 | + num_layers = 2 |
| 171 | + hidden_size = 32 |
| 172 | + |
| 173 | + self._test_op( |
| 174 | + ModelWithStates(), |
| 175 | + ( |
| 176 | + torch.randn(batch_size, 10, 64), # input |
| 177 | + torch.randn(num_layers, batch_size, hidden_size), # h0 |
| 178 | + torch.randn(num_layers, batch_size, hidden_size), # c0 |
| 179 | + ), |
| 180 | + flow, |
| 181 | + ) |
| 182 | + |
| 183 | + def test_lstm_return_hidden_states(self, flow: TestFlow) -> None: |
| 184 | + # Create a model that returns both output and hidden states |
| 185 | + class ModelWithHiddenStates(torch.nn.Module): |
| 186 | + def __init__(self): |
| 187 | + super().__init__() |
| 188 | + self.lstm = torch.nn.LSTM( |
| 189 | + input_size=64, |
| 190 | + hidden_size=32, |
| 191 | + num_layers=2, |
| 192 | + batch_first=True, |
| 193 | + ) |
| 194 | + |
| 195 | + def forward(self, x): |
| 196 | + # Return the complete output tuple: (output, (h_n, c_n)) |
| 197 | + output, (h_n, c_n) = self.lstm(x) |
| 198 | + return output, h_n, c_n |
| 199 | + |
| 200 | + batch_size = 1 |
| 201 | + seq_len = 10 |
| 202 | + input_size = 64 |
| 203 | + |
| 204 | + self._test_op( |
| 205 | + ModelWithHiddenStates(), |
| 206 | + (torch.randn(batch_size, seq_len, input_size),), |
| 207 | + flow, |
| 208 | + ) |
0 commit comments