@@ -651,10 +651,30 @@ def _prepare_for_llama_export(args) -> LLMEdgeManager:
651651 logging .info (f"Checkpoint dtype: { edge_manager .model .checkpoint_dtype } " )
652652 edge_manager = edge_manager .set_output_dir (output_dir_path ).source_transform (
653653 _get_source_transforms (
654- modelname = args .model ,
655654 dtype_override = dtype_override ,
655+ checkpoint = args .checkpoint ,
656656 checkpoint_dtype = DType .from_torch_dtype (checkpoint_dtype ), # type: ignore
657- args = args ,
657+ use_spin_quant = args .use_spin_quant ,
658+ embedding_quantize = args .embedding_quantize ,
659+ quantization_mode = args .quantization_mode ,
660+ expand_rope_table = args .expand_rope_table ,
661+ use_custom_sdpa_with_attention_mask = getattr (args , "use_custom_sdpa_with_attention_mask" , False ),
662+ use_sdpa_with_kv_cache = args .use_sdpa_with_kv_cache ,
663+ quantize_kv_cache = args .quantize_kv_cache ,
664+ use_kv_cache = args .use_kv_cache ,
665+ qnn = args .qnn ,
666+ use_qnn_sha = args .use_qnn_sha ,
667+ optimized_rotation_path = args .optimized_rotation_path ,
668+ mps = args .mps ,
669+ coreml = args .coreml ,
670+ coreml_ios = args .coreml_ios ,
671+ vulkan = args .vulkan ,
672+ use_shared_embedding = args .use_shared_embedding ,
673+ use_qat = args .use_qat ,
674+ use_lora = args .use_lora ,
675+ preq_mode = args .preq_mode ,
676+ preq_group_size = args .preq_group_size ,
677+ preq_embedding_quantize = args .preq_embedding_quantize ,
658678 )
659679 )
660680
@@ -1145,23 +1165,63 @@ def _load_llama_model(
11451165
11461166
11471167def _get_source_transforms ( # noqa
1148- modelname : str ,
11491168 dtype_override : DType ,
11501169 * ,
1170+ checkpoint : Optional [str ] = None ,
11511171 checkpoint_dtype : Optional [DType ] = None ,
1152- args ,
1172+ use_spin_quant : Optional [str ] = None ,
1173+ embedding_quantize : Optional [str ] = None ,
1174+ quantization_mode : Optional [str ] = None ,
1175+ expand_rope_table : bool = False ,
1176+ use_custom_sdpa_with_attention_mask : bool = False ,
1177+ use_sdpa_with_kv_cache : bool = False ,
1178+ quantize_kv_cache : bool = False ,
1179+ use_kv_cache : bool = False ,
1180+ qnn : bool = False ,
1181+ use_qnn_sha : bool = False ,
1182+ optimized_rotation_path : Optional [str ] = None ,
1183+ mps : bool = False ,
1184+ coreml : bool = False ,
1185+ coreml_ios : int = 15 ,
1186+ vulkan : bool = False ,
1187+ use_shared_embedding : bool = False ,
1188+ use_qat : bool = False ,
1189+ use_lora : int = 0 ,
1190+ preq_mode : Optional [str ] = None ,
1191+ preq_group_size : int = 32 ,
1192+ preq_embedding_quantize : str = "8,0" ,
11531193) -> List [Callable [[torch .nn .Module ], torch .nn .Module ]]:
11541194 """
11551195 Return a list of functions that transform a graph.
11561196
11571197 Args:
1158- modelname: The name of the model.
11591198 dtype_override: The dtype to use for the model.
1199+ checkpoint: Path to the checkpoint file.
11601200 checkpoint_dtype: The dtype of the checkpoint. At the moment, if this is specified,
11611201 it means that you want to run quantize transformations on the weights represented
11621202 in their original dtype, while the overall dtype of the model maybe something
11631203 different. If not specified, defaults to dtype_override.
1164- args: The arguments passed to the script.
1204+ use_spin_quant: Type of spin quant to use ("cuda" or "native").
1205+ embedding_quantize: Type of embedding quantization.
1206+ quantization_mode: Type of quantization mode.
1207+ expand_rope_table: Whether to expand rope table.
1208+ use_custom_sdpa_with_attention_mask: Whether to use custom SDPA with attention mask.
1209+ use_sdpa_with_kv_cache: Whether to use SDPA with KV cache.
1210+ quantize_kv_cache: Whether to quantize KV cache.
1211+ use_kv_cache: Whether to use KV cache.
1212+ qnn: Whether to use QNN.
1213+ use_qnn_sha: Whether to use QNN SHA.
1214+ optimized_rotation_path: Path to optimized rotation.
1215+ mps: Whether to use MPS.
1216+ coreml: Whether to use CoreML.
1217+ coreml_ios: CoreML iOS version.
1218+ vulkan: Whether to use Vulkan.
1219+ use_shared_embedding: Whether to use shared embedding.
1220+ use_qat: Whether to use QAT.
1221+ use_lora: LoRA rank (0 means no LoRA).
1222+ preq_mode: Pre-quantization mode.
1223+ preq_group_size: Pre-quantization group size.
1224+ preq_embedding_quantize: Pre-quantization embedding quantize.
11651225
11661226 Returns:
11671227 A list of transformation functions.
@@ -1172,21 +1232,21 @@ def _get_source_transforms( # noqa
11721232
11731233 transforms = []
11741234
1175- if args . use_spin_quant :
1176- if args . use_spin_quant == "cuda" :
1235+ if use_spin_quant :
1236+ if use_spin_quant == "cuda" :
11771237 from .source_transformation .spin_quant import (
11781238 inject_fast_hadamard_transform_cuda_for_spin_quant ,
11791239 )
11801240
11811241 transforms .append (inject_fast_hadamard_transform_cuda_for_spin_quant )
1182- elif args . use_spin_quant == "native" :
1242+ elif use_spin_quant == "native" :
11831243 from .source_transformation .spin_quant import (
11841244 inject_fast_hadamard_transform_native_for_spin_quant ,
11851245 )
11861246
11871247 transforms .append (inject_fast_hadamard_transform_native_for_spin_quant )
11881248
1189- if args . embedding_quantize :
1249+ if embedding_quantize :
11901250 """
11911251 When this option is selected, it finds all embedding layers and transforms
11921252 into quantized embedding equivalent module.
@@ -1196,12 +1256,24 @@ def _get_source_transforms( # noqa
11961256 transformations based on the given checkpoint first. In those cases,
11971257 this wil be a no-op.
11981258 """
1199- modelname = f"{ modelname } _e"
1259+ # Create a mock args object with the necessary attributes
1260+ class Args :
1261+ pass
1262+ args = Args ()
1263+ args .checkpoint = checkpoint
1264+ args .embedding_quantize = embedding_quantize
1265+ args .use_shared_embedding = use_shared_embedding
1266+ args .use_qat = use_qat
1267+ args .use_lora = use_lora
1268+ args .preq_mode = preq_mode
1269+ args .preq_group_size = preq_group_size
1270+ args .preq_embedding_quantize = preq_embedding_quantize
1271+
12001272 transforms .append (get_quant_embedding_transform (args , checkpoint_dtype ))
12011273
12021274 # quantization_mode should be applied after embedding_quantize
12031275 # to support shared_embedding
1204- if args . quantization_mode :
1276+ if quantization_mode :
12051277 """
12061278 When this option is selected, it finds all linear layers and transforms
12071279 into quantized linear equivalent module.
@@ -1215,7 +1287,18 @@ def _get_source_transforms( # noqa
12151287 There are cases where this may be a no-op, namely, if all linears are
12161288 quantized in the checkpoint.
12171289 """
1218- modelname = f"{ modelname } _q"
1290+ # Create a mock args object with the necessary attributes
1291+ class Args :
1292+ pass
1293+ args = Args ()
1294+ args .checkpoint = checkpoint
1295+ args .quantization_mode = quantization_mode
1296+ args .group_size = preq_group_size # Using preq_group_size as group_size
1297+ args .use_shared_embedding = use_shared_embedding
1298+ args .use_qat = use_qat
1299+ args .use_lora = use_lora
1300+ args .preq_mode = preq_mode
1301+
12191302 transforms .append (
12201303 get_quant_weight_transform (
12211304 args = args ,
@@ -1224,15 +1307,12 @@ def _get_source_transforms( # noqa
12241307 )
12251308 )
12261309
1227- if args . expand_rope_table :
1310+ if expand_rope_table :
12281311 transforms .append (materialze_broadcast_of_rope_freq_cis )
12291312
1230- use_attention_mask_for_custom_sdpa = False
1231- if isinstance (args , argparse .Namespace ):
1232- if getattr (args , "use_custom_sdpa_with_attention_mask" , None ):
1233- use_attention_mask_for_custom_sdpa = True
1313+ use_attention_mask_for_custom_sdpa = use_custom_sdpa_with_attention_mask
12341314
1235- if args . use_sdpa_with_kv_cache :
1315+ if use_sdpa_with_kv_cache :
12361316 transforms .append (replace_kv_cache_with_custom_kv_cache )
12371317 # todo: do this optionally
12381318 # if use attention mask instead of causal attention
@@ -1244,23 +1324,23 @@ def _get_source_transforms( # noqa
12441324 else :
12451325 transforms .append (replace_sdpa_with_custom_op )
12461326
1247- if args . quantize_kv_cache :
1248- assert args . use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
1327+ if quantize_kv_cache :
1328+ assert use_kv_cache , "quantize_kv_cache requires use_kv_cache=True"
12491329 transforms .append (replace_kv_cache_with_quantized_kv_cache )
12501330 # Right now
12511331 transforms .append (replace_sdpa_with_quantized_sdpa )
12521332
1253- if args . use_kv_cache :
1254- if args . qnn :
1333+ if use_kv_cache :
1334+ if qnn :
12551335 from executorch .backends .qualcomm .utils .utils import (
12561336 convert_linear_to_conv2d ,
12571337 )
12581338
1259- if args . use_qnn_sha :
1260- if args . optimized_rotation_path :
1339+ if use_qnn_sha :
1340+ if optimized_rotation_path :
12611341 transforms .append (fuse_layer_norms )
12621342 transforms .append (
1263- get_model_with_r1_r2 (args . optimized_rotation_path )
1343+ get_model_with_r1_r2 (optimized_rotation_path )
12641344 )
12651345 transforms .append (replace_attention_to_attention_sha )
12661346 transforms .append (replace_causal_mask )
@@ -1272,29 +1352,29 @@ def _get_source_transforms( # noqa
12721352 transforms .append (replace_sdpa_with_flex_sdpa )
12731353 transforms .append (replace_causal_mask )
12741354 transforms .append (replace_rms_norm_with_native_rms_norm )
1275- if args . optimized_rotation_path :
1355+ if optimized_rotation_path :
12761356 transforms .append (fuse_layer_norms )
12771357 transforms .append (
1278- get_model_with_r1_r2 (args . optimized_rotation_path )
1358+ get_model_with_r1_r2 (optimized_rotation_path )
12791359 )
12801360 # pyre-fixme[16]: Module `backends` has no attribute `qualcomm`.
12811361 transforms .append (convert_linear_to_conv2d )
12821362
1283- elif args . mps :
1363+ elif mps :
12841364 # Currently mps doesn't support sdpa op, use the simpler decomposition
12851365 # to get free perf gain.
12861366 transforms .append (replace_sdpa_with_simple_sdpa )
12871367 transforms .append (replace_causal_mask )
12881368
1289- elif args . coreml :
1369+ elif coreml :
12901370 # iOS 18 introduced fused sdpa op
1291- if args . coreml_ios >= 18 :
1371+ if coreml_ios >= 18 :
12921372 transforms .append (replace_sdpa_with_coreml_sdpa )
12931373 else :
12941374 transforms .append (replace_sdpa_with_simple_sdpa )
12951375 transforms .append (replace_kv_cache_with_coreml_kv_cache )
12961376
1297- if args . vulkan :
1377+ if vulkan :
12981378 transforms .append (replace_with_vulkan_rotary_emb )
12991379
13001380 return transforms
0 commit comments