diff --git a/backends/qualcomm/quantizer/observers/per_channel_param_observer.py b/backends/qualcomm/quantizer/observers/per_channel_param_observer.py index 0bba4d5ffeb..3c04e620308 100644 --- a/backends/qualcomm/quantizer/observers/per_channel_param_observer.py +++ b/backends/qualcomm/quantizer/observers/per_channel_param_observer.py @@ -109,6 +109,5 @@ def forward(self, x_orig): self.quant_max, ) - @torch.jit.export def calculate_qparams(self): return self._calculate_qparams(self.min_val, self.max_val) diff --git a/examples/cadence/models/rnnt_encoder.py b/examples/cadence/models/rnnt_encoder.py index 641fa5e6121..d89f1ca42e7 100644 --- a/examples/cadence/models/rnnt_encoder.py +++ b/examples/cadence/models/rnnt_encoder.py @@ -103,7 +103,6 @@ def forward( layer_norm_out = self.layer_norm(output_linear_out) return layer_norm_out, transformer_lengths - @torch.jit.export def infer( self, input: torch.Tensor, diff --git a/examples/models/efficient_sam/efficient_sam_core/efficient_sam.py b/examples/models/efficient_sam/efficient_sam_core/efficient_sam.py index d06db2de434..b3594feff28 100644 --- a/examples/models/efficient_sam/efficient_sam_core/efficient_sam.py +++ b/examples/models/efficient_sam/efficient_sam_core/efficient_sam.py @@ -59,7 +59,6 @@ def __init__( "pixel_std", torch.Tensor(pixel_std).view(1, 3, 1, 1), False ) - @torch.jit.export def predict_masks( self, image_embeddings: torch.Tensor, @@ -174,7 +173,6 @@ def get_rescaled_pts( dim=-1, ) - @torch.jit.export def get_image_embeddings(self, batched_images) -> torch.Tensor: """ Predicts masks end-to-end from provided images and prompts. diff --git a/examples/models/efficient_sam/efficient_sam_core/efficient_sam_encoder.py b/examples/models/efficient_sam/efficient_sam_core/efficient_sam_encoder.py index d6ea4f5cc09..e49d3988d49 100644 --- a/examples/models/efficient_sam/efficient_sam_core/efficient_sam_encoder.py +++ b/examples/models/efficient_sam/efficient_sam_core/efficient_sam_encoder.py @@ -142,7 +142,6 @@ def forward(self, x): return x -@torch.jit.export def get_abs_pos( abs_pos: torch.Tensor, has_cls_token: bool, hw: List[int] ) -> torch.Tensor: