Skip to content

Conversation

@SS-JIA
Copy link
Contributor

@SS-JIA SS-JIA commented Jun 25, 2025

Stack from ghstack (oldest at bottom):

Changes

  • Move the logic skipping output nodes that are mutable buffers from runtime to AOT

Context

A fx.Graph may return nodes that are mutable buffers:

    class GraphModule(torch.nn.Module):
        def forward(self, p_wrapped_module_wq_weight: "f32[2048, 2048]", p_wrapped_module_wk_weight: "f32[512, 2048]", p_wrapped_module_wv_weight: "f32[512, 2048]", p_wrapped_module_wo_weight: "f32[2048, 2048]", b_wrapped_module_kv_cache_k_cache: "f32[1, 2048, 8, 64]", b_wrapped_module_kv_cache_v_cache: "f32[1, 2048, 8, 64]", x: "f32[1, s27, 2048]", freqs_cos: "f32[s27, 32]", freqs_sin: "f32[s27, 32]", input_pos: "i64[1]"):
            sym_size: "Sym(s27)" = torch.ops.aten.sym_size.int(x, 1)

            ...

            # b_wrapped_module_kv_cache_*_cache are mutable buffers
            # getitem_2 and getitem_3 are derived from mutable buffers, hence they are
            # themselves mutable buffers
            auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = getitem_1, cache = b_wrapped_module_kv_cache_k_cache, start_pos = _local_scalar_dense_1);  getitem_1 = b_wrapped_module_kv_cache_k_cache = None
            getitem_2: "f32[1, 2048, 8, 64]" = auto_functionalized[1];  auto_functionalized = None
            auto_functionalized_1 = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = aten_view_copy_default_8, cache = b_wrapped_module_kv_cache_v_cache, start_pos = _local_scalar_dense_1);  aten_view_copy_default_8 = b_wrapped_module_kv_cache_v_cache = _local_scalar_dense_1 = None
            getitem_3: "f32[1, 2048, 8, 64]" = auto_functionalized_1[1];  auto_functionalized_1 = None

            ...

            aten_permute_copy_default_3: "f32[2048, 2048]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(p_wrapped_module_wo_weight, [1, 0]);  p_wrapped_module_wo_weight = None
            aten_view_copy_default_10: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_view_copy_default_9, [sym_size, 2048]);  aten_view_copy_default_9 = None
            aten_mm_default_3: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_view_copy_default_10, aten_permute_copy_default_3);  aten_view_copy_default_10 = aten_permute_copy_default_3 = None
            aten_view_copy_default_11: "f32[1, s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_mm_default_3, [1, sym_size, 2048]);  aten_mm_default_3 = sym_size = None

            # getitem_2 and getitem_3 are returned as outputs, presumably to prevent the
            # update_cache calls from being removed due to dead code elimination
            return (getitem_2, getitem_3, aten_view_copy_default_11, None)

In the graph signature of the ExportedProgram these show up as BUFFER_MUTATION outputs

Graph signature:
    # inputs
    p_wrapped_module_wq_weight: PARAMETER target='wrapped_module.wq.weight'
    p_wrapped_module_wk_weight: PARAMETER target='wrapped_module.wk.weight'
    p_wrapped_module_wv_weight: PARAMETER target='wrapped_module.wv.weight'
    p_wrapped_module_wo_weight: PARAMETER target='wrapped_module.wo.weight'
    b_wrapped_module_kv_cache_k_cache: BUFFER target='wrapped_module.kv_cache.k_cache' persistent=True
    b_wrapped_module_kv_cache_v_cache: BUFFER target='wrapped_module.kv_cache.v_cache' persistent=True
    x: USER_INPUT
    freqs_cos: USER_INPUT
    freqs_sin: USER_INPUT
    input_pos: USER_INPUT

    # outputs
    getitem_2: BUFFER_MUTATION target='wrapped_module.kv_cache.k_cache'
    getitem_3: BUFFER_MUTATION target='wrapped_module.kv_cache.v_cache'
    aten_view_copy_default_11: USER_OUTPUT
    : USER_OUTPUT

Although these nodes are technically returned by the fx.Graph, BUFFER_MUTATION outputs are not included in the delegate call schema. Since the Vulkan delegate serialization uses the output node to mark which values are returned as outputs, this could result in a mismatch betwen the outputs of the Vulkan delegate and the outputs expected by the ExecuTorch runtime.

Motivation

Previously, this mismatch was addressed in the runtime, by skipping the processing of non-tensor outputs. However, this solution does not account for the fact that in some models, paramters of the model may be returned as outputs. In this case, those parameter outputs would be skipped but the ExecuTorch runtime would still expect to receive them as outputs.

To solve the problem properly, this diff changes the serialization logic to check if an output node is a mutable buffer, and skip marking it as an output if so. In the runtime, all output nodes are processed instead of only processing tensor outputs.

Differential Revision: D77281491

…fers

## Changes

* Move the logic skipping output nodes that are mutable buffers from runtime to AOT

## Context

A `fx.Graph` may return nodes that are mutable buffers:


```
    class GraphModule(torch.nn.Module):
        def forward(self, p_wrapped_module_wq_weight: "f32[2048, 2048]", p_wrapped_module_wk_weight: "f32[512, 2048]", p_wrapped_module_wv_weight: "f32[512, 2048]", p_wrapped_module_wo_weight: "f32[2048, 2048]", b_wrapped_module_kv_cache_k_cache: "f32[1, 2048, 8, 64]", b_wrapped_module_kv_cache_v_cache: "f32[1, 2048, 8, 64]", x: "f32[1, s27, 2048]", freqs_cos: "f32[s27, 32]", freqs_sin: "f32[s27, 32]", input_pos: "i64[1]"):
            sym_size: "Sym(s27)" = torch.ops.aten.sym_size.int(x, 1)

            ...

            # b_wrapped_module_kv_cache_*_cache are mutable buffers
            # getitem_2 and getitem_3 are derived from mutable buffers, hence they are
            # themselves mutable buffers
            auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = getitem_1, cache = b_wrapped_module_kv_cache_k_cache, start_pos = _local_scalar_dense_1);  getitem_1 = b_wrapped_module_kv_cache_k_cache = None
            getitem_2: "f32[1, 2048, 8, 64]" = auto_functionalized[1];  auto_functionalized = None
            auto_functionalized_1 = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = aten_view_copy_default_8, cache = b_wrapped_module_kv_cache_v_cache, start_pos = _local_scalar_dense_1);  aten_view_copy_default_8 = b_wrapped_module_kv_cache_v_cache = _local_scalar_dense_1 = None
            getitem_3: "f32[1, 2048, 8, 64]" = auto_functionalized_1[1];  auto_functionalized_1 = None

            ...

            aten_permute_copy_default_3: "f32[2048, 2048]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(p_wrapped_module_wo_weight, [1, 0]);  p_wrapped_module_wo_weight = None
            aten_view_copy_default_10: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_view_copy_default_9, [sym_size, 2048]);  aten_view_copy_default_9 = None
            aten_mm_default_3: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_view_copy_default_10, aten_permute_copy_default_3);  aten_view_copy_default_10 = aten_permute_copy_default_3 = None
            aten_view_copy_default_11: "f32[1, s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_mm_default_3, [1, sym_size, 2048]);  aten_mm_default_3 = sym_size = None

            # getitem_2 and getitem_3 are returned as outputs, presumably to prevent the
            # update_cache calls from being removed due to dead code elimination
            return (getitem_2, getitem_3, aten_view_copy_default_11, None)
```

In the graph signature of the `ExportedProgram` these show up as `BUFFER_MUTATION` outputs

```
Graph signature:
    # inputs
    p_wrapped_module_wq_weight: PARAMETER target='wrapped_module.wq.weight'
    p_wrapped_module_wk_weight: PARAMETER target='wrapped_module.wk.weight'
    p_wrapped_module_wv_weight: PARAMETER target='wrapped_module.wv.weight'
    p_wrapped_module_wo_weight: PARAMETER target='wrapped_module.wo.weight'
    b_wrapped_module_kv_cache_k_cache: BUFFER target='wrapped_module.kv_cache.k_cache' persistent=True
    b_wrapped_module_kv_cache_v_cache: BUFFER target='wrapped_module.kv_cache.v_cache' persistent=True
    x: USER_INPUT
    freqs_cos: USER_INPUT
    freqs_sin: USER_INPUT
    input_pos: USER_INPUT

    # outputs
    getitem_2: BUFFER_MUTATION target='wrapped_module.kv_cache.k_cache'
    getitem_3: BUFFER_MUTATION target='wrapped_module.kv_cache.v_cache'
    aten_view_copy_default_11: USER_OUTPUT
    : USER_OUTPUT
```

Although these nodes are technically returned by the `fx.Graph`, `BUFFER_MUTATION` outputs are not included in the delegate call schema. Since the Vulkan delegate serialization uses the output node to mark which values are returned as outputs, this could result in a mismatch betwen the outputs of the Vulkan delegate and the outputs expected by the ExecuTorch runtime.

## Motivation

Previously, this mismatch was addressed in the runtime, by skipping the processing of non-tensor outputs. However, this solution does not account for the fact that in some models, paramters of the model may be returned as outputs. In this case, those parameter outputs would be skipped but the ExecuTorch runtime would still expect to receive them as outputs.

To solve the problem properly, this diff changes the serialization logic to check if an output node is a mutable buffer, and skip marking it as an output if so. In the runtime, all output nodes are processed instead of only processing tensor outputs.

Differential Revision: [D77281491](https://our.internmc.facebook.com/intern/diff/D77281491/)

[ghstack-poisoned]
@pytorch-bot
Copy link

pytorch-bot bot commented Jun 25, 2025

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/executorch/11983

Note: Links to docs will display an error until the docs builds have been completed.

✅ No Failures

As of commit ef5e1d5 with merge base ecb85ce (image):
💚 Looks good so far! There are no failures yet. 💚

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Jun 25, 2025
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D77281491

@github-actions
Copy link

This PR needs a release notes: label

If your change should be included in the release notes (i.e. would users of this library care about this change?), please use a label starting with release notes:. This helps us keep track and include your important work in the next release notes.

To add a label, you can comment to pytorchbot, for example
@pytorchbot label "release notes: none"

For more information, see
https://github.com/pytorch/pytorch/wiki/PyTorch-AutoLabel-Bot#why-categorize-for-release-notes-and-how-does-it-work.

…mutable buffers"

## Changes

* Move the logic skipping output nodes that are mutable buffers from runtime to AOT

## Context

A `fx.Graph` may return nodes that are mutable buffers:


```
    class GraphModule(torch.nn.Module):
        def forward(self, p_wrapped_module_wq_weight: "f32[2048, 2048]", p_wrapped_module_wk_weight: "f32[512, 2048]", p_wrapped_module_wv_weight: "f32[512, 2048]", p_wrapped_module_wo_weight: "f32[2048, 2048]", b_wrapped_module_kv_cache_k_cache: "f32[1, 2048, 8, 64]", b_wrapped_module_kv_cache_v_cache: "f32[1, 2048, 8, 64]", x: "f32[1, s27, 2048]", freqs_cos: "f32[s27, 32]", freqs_sin: "f32[s27, 32]", input_pos: "i64[1]"):
            sym_size: "Sym(s27)" = torch.ops.aten.sym_size.int(x, 1)

            ...

            # b_wrapped_module_kv_cache_*_cache are mutable buffers
            # getitem_2 and getitem_3 are derived from mutable buffers, hence they are
            # themselves mutable buffers
            auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = getitem_1, cache = b_wrapped_module_kv_cache_k_cache, start_pos = _local_scalar_dense_1);  getitem_1 = b_wrapped_module_kv_cache_k_cache = None
            getitem_2: "f32[1, 2048, 8, 64]" = auto_functionalized[1];  auto_functionalized = None
            auto_functionalized_1 = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = aten_view_copy_default_8, cache = b_wrapped_module_kv_cache_v_cache, start_pos = _local_scalar_dense_1);  aten_view_copy_default_8 = b_wrapped_module_kv_cache_v_cache = _local_scalar_dense_1 = None
            getitem_3: "f32[1, 2048, 8, 64]" = auto_functionalized_1[1];  auto_functionalized_1 = None

            ...

            aten_permute_copy_default_3: "f32[2048, 2048]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(p_wrapped_module_wo_weight, [1, 0]);  p_wrapped_module_wo_weight = None
            aten_view_copy_default_10: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_view_copy_default_9, [sym_size, 2048]);  aten_view_copy_default_9 = None
            aten_mm_default_3: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_view_copy_default_10, aten_permute_copy_default_3);  aten_view_copy_default_10 = aten_permute_copy_default_3 = None
            aten_view_copy_default_11: "f32[1, s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_mm_default_3, [1, sym_size, 2048]);  aten_mm_default_3 = sym_size = None

            # getitem_2 and getitem_3 are returned as outputs, presumably to prevent the
            # update_cache calls from being removed due to dead code elimination
            return (getitem_2, getitem_3, aten_view_copy_default_11, None)
```

In the graph signature of the `ExportedProgram` these show up as `BUFFER_MUTATION` outputs

```
Graph signature:
    # inputs
    p_wrapped_module_wq_weight: PARAMETER target='wrapped_module.wq.weight'
    p_wrapped_module_wk_weight: PARAMETER target='wrapped_module.wk.weight'
    p_wrapped_module_wv_weight: PARAMETER target='wrapped_module.wv.weight'
    p_wrapped_module_wo_weight: PARAMETER target='wrapped_module.wo.weight'
    b_wrapped_module_kv_cache_k_cache: BUFFER target='wrapped_module.kv_cache.k_cache' persistent=True
    b_wrapped_module_kv_cache_v_cache: BUFFER target='wrapped_module.kv_cache.v_cache' persistent=True
    x: USER_INPUT
    freqs_cos: USER_INPUT
    freqs_sin: USER_INPUT
    input_pos: USER_INPUT

    # outputs
    getitem_2: BUFFER_MUTATION target='wrapped_module.kv_cache.k_cache'
    getitem_3: BUFFER_MUTATION target='wrapped_module.kv_cache.v_cache'
    aten_view_copy_default_11: USER_OUTPUT
    : USER_OUTPUT
```

Although these nodes are technically returned by the `fx.Graph`, `BUFFER_MUTATION` outputs are not included in the delegate call schema. Since the Vulkan delegate serialization uses the output node to mark which values are returned as outputs, this could result in a mismatch betwen the outputs of the Vulkan delegate and the outputs expected by the ExecuTorch runtime.

## Motivation

Previously, this mismatch was addressed in the runtime, by skipping the processing of non-tensor outputs. However, this solution does not account for the fact that in some models, paramters of the model may be returned as outputs. In this case, those parameter outputs would be skipped but the ExecuTorch runtime would still expect to receive them as outputs.

To solve the problem properly, this diff changes the serialization logic to check if an output node is a mutable buffer, and skip marking it as an output if so. In the runtime, all output nodes are processed instead of only processing tensor outputs.

Differential Revision: [D77281491](https://our.internmc.facebook.com/intern/diff/D77281491/)

[ghstack-poisoned]
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D77281491

…mutable buffers"

## Changes

* Move the logic skipping output nodes that are mutable buffers from runtime to AOT

## Context

A `fx.Graph` may return nodes that are mutable buffers:


```
    class GraphModule(torch.nn.Module):
        def forward(self, p_wrapped_module_wq_weight: "f32[2048, 2048]", p_wrapped_module_wk_weight: "f32[512, 2048]", p_wrapped_module_wv_weight: "f32[512, 2048]", p_wrapped_module_wo_weight: "f32[2048, 2048]", b_wrapped_module_kv_cache_k_cache: "f32[1, 2048, 8, 64]", b_wrapped_module_kv_cache_v_cache: "f32[1, 2048, 8, 64]", x: "f32[1, s27, 2048]", freqs_cos: "f32[s27, 32]", freqs_sin: "f32[s27, 32]", input_pos: "i64[1]"):
            sym_size: "Sym(s27)" = torch.ops.aten.sym_size.int(x, 1)

            ...

            # b_wrapped_module_kv_cache_*_cache are mutable buffers
            # getitem_2 and getitem_3 are derived from mutable buffers, hence they are
            # themselves mutable buffers
            auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = getitem_1, cache = b_wrapped_module_kv_cache_k_cache, start_pos = _local_scalar_dense_1);  getitem_1 = b_wrapped_module_kv_cache_k_cache = None
            getitem_2: "f32[1, 2048, 8, 64]" = auto_functionalized[1];  auto_functionalized = None
            auto_functionalized_1 = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = aten_view_copy_default_8, cache = b_wrapped_module_kv_cache_v_cache, start_pos = _local_scalar_dense_1);  aten_view_copy_default_8 = b_wrapped_module_kv_cache_v_cache = _local_scalar_dense_1 = None
            getitem_3: "f32[1, 2048, 8, 64]" = auto_functionalized_1[1];  auto_functionalized_1 = None

            ...

            aten_permute_copy_default_3: "f32[2048, 2048]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(p_wrapped_module_wo_weight, [1, 0]);  p_wrapped_module_wo_weight = None
            aten_view_copy_default_10: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_view_copy_default_9, [sym_size, 2048]);  aten_view_copy_default_9 = None
            aten_mm_default_3: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_view_copy_default_10, aten_permute_copy_default_3);  aten_view_copy_default_10 = aten_permute_copy_default_3 = None
            aten_view_copy_default_11: "f32[1, s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_mm_default_3, [1, sym_size, 2048]);  aten_mm_default_3 = sym_size = None

            # getitem_2 and getitem_3 are returned as outputs, presumably to prevent the
            # update_cache calls from being removed due to dead code elimination
            return (getitem_2, getitem_3, aten_view_copy_default_11, None)
```

In the graph signature of the `ExportedProgram` these show up as `BUFFER_MUTATION` outputs

```
Graph signature:
    # inputs
    p_wrapped_module_wq_weight: PARAMETER target='wrapped_module.wq.weight'
    p_wrapped_module_wk_weight: PARAMETER target='wrapped_module.wk.weight'
    p_wrapped_module_wv_weight: PARAMETER target='wrapped_module.wv.weight'
    p_wrapped_module_wo_weight: PARAMETER target='wrapped_module.wo.weight'
    b_wrapped_module_kv_cache_k_cache: BUFFER target='wrapped_module.kv_cache.k_cache' persistent=True
    b_wrapped_module_kv_cache_v_cache: BUFFER target='wrapped_module.kv_cache.v_cache' persistent=True
    x: USER_INPUT
    freqs_cos: USER_INPUT
    freqs_sin: USER_INPUT
    input_pos: USER_INPUT

    # outputs
    getitem_2: BUFFER_MUTATION target='wrapped_module.kv_cache.k_cache'
    getitem_3: BUFFER_MUTATION target='wrapped_module.kv_cache.v_cache'
    aten_view_copy_default_11: USER_OUTPUT
    : USER_OUTPUT
```

Although these nodes are technically returned by the `fx.Graph`, `BUFFER_MUTATION` outputs are not included in the delegate call schema. Since the Vulkan delegate serialization uses the output node to mark which values are returned as outputs, this could result in a mismatch betwen the outputs of the Vulkan delegate and the outputs expected by the ExecuTorch runtime.

## Motivation

Previously, this mismatch was addressed in the runtime, by skipping the processing of non-tensor outputs. However, this solution does not account for the fact that in some models, paramters of the model may be returned as outputs. In this case, those parameter outputs would be skipped but the ExecuTorch runtime would still expect to receive them as outputs.

To solve the problem properly, this diff changes the serialization logic to check if an output node is a mutable buffer, and skip marking it as an output if so. In the runtime, all output nodes are processed instead of only processing tensor outputs.

Differential Revision: [D77281491](https://our.internmc.facebook.com/intern/diff/D77281491/)

[ghstack-poisoned]
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D77281491

…mutable buffers"

## Changes

* Move the logic skipping output nodes that are mutable buffers from runtime to AOT

## Context

A `fx.Graph` may return nodes that are mutable buffers:


```
    class GraphModule(torch.nn.Module):
        def forward(self, p_wrapped_module_wq_weight: "f32[2048, 2048]", p_wrapped_module_wk_weight: "f32[512, 2048]", p_wrapped_module_wv_weight: "f32[512, 2048]", p_wrapped_module_wo_weight: "f32[2048, 2048]", b_wrapped_module_kv_cache_k_cache: "f32[1, 2048, 8, 64]", b_wrapped_module_kv_cache_v_cache: "f32[1, 2048, 8, 64]", x: "f32[1, s27, 2048]", freqs_cos: "f32[s27, 32]", freqs_sin: "f32[s27, 32]", input_pos: "i64[1]"):
            sym_size: "Sym(s27)" = torch.ops.aten.sym_size.int(x, 1)

            ...

            # b_wrapped_module_kv_cache_*_cache are mutable buffers
            # getitem_2 and getitem_3 are derived from mutable buffers, hence they are
            # themselves mutable buffers
            auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = getitem_1, cache = b_wrapped_module_kv_cache_k_cache, start_pos = _local_scalar_dense_1);  getitem_1 = b_wrapped_module_kv_cache_k_cache = None
            getitem_2: "f32[1, 2048, 8, 64]" = auto_functionalized[1];  auto_functionalized = None
            auto_functionalized_1 = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = aten_view_copy_default_8, cache = b_wrapped_module_kv_cache_v_cache, start_pos = _local_scalar_dense_1);  aten_view_copy_default_8 = b_wrapped_module_kv_cache_v_cache = _local_scalar_dense_1 = None
            getitem_3: "f32[1, 2048, 8, 64]" = auto_functionalized_1[1];  auto_functionalized_1 = None

            ...

            aten_permute_copy_default_3: "f32[2048, 2048]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(p_wrapped_module_wo_weight, [1, 0]);  p_wrapped_module_wo_weight = None
            aten_view_copy_default_10: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_view_copy_default_9, [sym_size, 2048]);  aten_view_copy_default_9 = None
            aten_mm_default_3: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_view_copy_default_10, aten_permute_copy_default_3);  aten_view_copy_default_10 = aten_permute_copy_default_3 = None
            aten_view_copy_default_11: "f32[1, s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_mm_default_3, [1, sym_size, 2048]);  aten_mm_default_3 = sym_size = None

            # getitem_2 and getitem_3 are returned as outputs, presumably to prevent the
            # update_cache calls from being removed due to dead code elimination
            return (getitem_2, getitem_3, aten_view_copy_default_11, None)
```

In the graph signature of the `ExportedProgram` these show up as `BUFFER_MUTATION` outputs

```
Graph signature:
    # inputs
    p_wrapped_module_wq_weight: PARAMETER target='wrapped_module.wq.weight'
    p_wrapped_module_wk_weight: PARAMETER target='wrapped_module.wk.weight'
    p_wrapped_module_wv_weight: PARAMETER target='wrapped_module.wv.weight'
    p_wrapped_module_wo_weight: PARAMETER target='wrapped_module.wo.weight'
    b_wrapped_module_kv_cache_k_cache: BUFFER target='wrapped_module.kv_cache.k_cache' persistent=True
    b_wrapped_module_kv_cache_v_cache: BUFFER target='wrapped_module.kv_cache.v_cache' persistent=True
    x: USER_INPUT
    freqs_cos: USER_INPUT
    freqs_sin: USER_INPUT
    input_pos: USER_INPUT

    # outputs
    getitem_2: BUFFER_MUTATION target='wrapped_module.kv_cache.k_cache'
    getitem_3: BUFFER_MUTATION target='wrapped_module.kv_cache.v_cache'
    aten_view_copy_default_11: USER_OUTPUT
    : USER_OUTPUT
```

Although these nodes are technically returned by the `fx.Graph`, `BUFFER_MUTATION` outputs are not included in the delegate call schema. Since the Vulkan delegate serialization uses the output node to mark which values are returned as outputs, this could result in a mismatch betwen the outputs of the Vulkan delegate and the outputs expected by the ExecuTorch runtime.

## Motivation

Previously, this mismatch was addressed in the runtime, by skipping the processing of non-tensor outputs. However, this solution does not account for the fact that in some models, paramters of the model may be returned as outputs. In this case, those parameter outputs would be skipped but the ExecuTorch runtime would still expect to receive them as outputs.

To solve the problem properly, this diff changes the serialization logic to check if an output node is a mutable buffer, and skip marking it as an output if so. In the runtime, all output nodes are processed instead of only processing tensor outputs.

Differential Revision: [D77281491](https://our.internmc.facebook.com/intern/diff/D77281491/)

[ghstack-poisoned]
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D77281491

@facebook-github-bot facebook-github-bot merged commit 968688d into gh/SS-JIA/249/base Jun 26, 2025
96 of 98 checks passed
@facebook-github-bot facebook-github-bot deleted the gh/SS-JIA/249/head branch June 26, 2025 20:06
larryliu0820 pushed a commit that referenced this pull request Jun 27, 2025
…fers (#12020)

This PR was created by the merge bot to help merge the original PR into
the main branch.
ghstack PR number: #11983 by
@SS-JIA
^ Please use this as the source of truth for the PR details, comments,
and reviews
ghstack PR base:
https://github.com/pytorch/executorch/tree/gh/SS-JIA/249/base
ghstack PR head:
https://github.com/pytorch/executorch/tree/gh/SS-JIA/249/head
Merge bot PR base: https://github.com/pytorch/executorch/tree/main
Merge bot PR head:
https://github.com/pytorch/executorch/tree/gh/SS-JIA/249/orig
@diff-train-skip-merge

Co-authored-by: Stephen Jia <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. fb-exported

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants