diff --git a/backends/arm/test/ops/test_slice.py b/backends/arm/test/ops/test_slice.py index bdf5ccda770..43214ab42ac 100644 --- a/backends/arm/test/ops/test_slice.py +++ b/backends/arm/test/ops/test_slice.py @@ -7,7 +7,6 @@ from typing import Tuple -import pytest import torch from executorch.backends.arm.quantizer.arm_quantizer import ( get_symmetric_a16w8_quantization_config, @@ -78,8 +77,8 @@ def test_slice_tensor_tosa_INT_nhwc(test_data: torch.Tensor): x_fails = { - "ones_slice_3": "MLETORCH-1402: Slice operator has incorrect number of inputs", - "ones_slice_4": "MLETORCH-1402: Slice operator has incorrect number of inputs", + "ones_slice_3": "MLETORCH-1402: Compiler limitation when passing more than 255 char as argument to FVP.", + "ones_slice_4": "MLETORCH-1402: Compiler limitation when passing more than 255 char as argument to FVP.", } @@ -153,9 +152,6 @@ def get_symmetric_a16w8_slice_quantizer(per_channel_quantization=False): @common.parametrize("test_data", test_data_suite) -@pytest.mark.xfail( - reason="missing int16 slice ops support; fails at TOSA reference model with Unsupported operation type or rank. See: https://github.com/pytorch/executorch/issues/13976" -) def test_slice_tensor_16a8w_tosa_INT(test_data: torch.Tensor): """Test slice operation with 16A8W quantization (16-bit activations, 8-bit weights)""" per_channel_quantization = False @@ -179,11 +175,8 @@ def test_slice_tensor_16a8w_tosa_INT(test_data: torch.Tensor): pipeline.run() -@common.parametrize("test_data", test_data_suite) +@common.parametrize("test_data", test_data_suite, x_fails) @common.XfailIfNoCorstone300 -@pytest.mark.xfail( - reason="Vela compilation fails with 'Invalid arguments' for int16 slice operations" -) def test_slice_tensor_16a8w_u55_INT16(test_data: torch.Tensor): """Test slice operation with 16A8W quantization on U55 (16-bit activations, 8-bit weights)""" per_channel_quantization = False @@ -206,11 +199,8 @@ def test_slice_tensor_16a8w_u55_INT16(test_data: torch.Tensor): pipeline.run() -@common.parametrize("test_data", test_data_suite) +@common.parametrize("test_data", test_data_suite, x_fails) @common.XfailIfNoCorstone320 -@pytest.mark.xfail( - reason="Vela compilation fails with 'Invalid arguments' for int16 slice operations" -) def test_slice_tensor_16a8w_u85_INT16(test_data: torch.Tensor): """Test slice operation with 16A8W quantization on U85 (16-bit activations, 8-bit weights)""" per_channel_quantization = False