@@ -379,11 +379,6 @@ def wrapped_fn(*args, **kwargs):
379
379
skip ('svd_lowrank' , '' ), # fails on cuda, runs okay on cpu
380
380
skip ('nn.functional.dropout2d' , '' ), # fails on cuda, runs okay on cpu
381
381
382
- # The following don't have a forward-mode AD formula in PyTorch core
383
- # (check derivatives.yaml).
384
- xfail ('var_mean' ),
385
- xfail ('std_mean' ),
386
-
387
382
# =============================================
388
383
# NB: The above failures also fail using PyTorch core's
389
384
# forward-mode AD and vmap.
@@ -674,14 +669,11 @@ def test_vmapvjp(self, device, dtype, op):
674
669
# skip because this is flaky depending on what the max_norm is!
675
670
skip ('nn.functional.embedding' , '' ),
676
671
xfail ('nn.functional.soft_margin_loss' , '' ),
677
- xfail ('nn.functional.binary_cross_entropy_with_logits' , '' ),
678
672
xfail ('linalg.householder_product' ),
679
673
xfail ('tensor_split' ),
680
674
xfail ('quantile' ),
681
- xfail ('var_mean' ),
682
675
xfail ('as_strided' ),
683
676
xfail ('nn.functional.gaussian_nll_loss' ),
684
- xfail ('std_mean' ),
685
677
xfail ('scatter' ),
686
678
xfail ('matrix_exp' ),
687
679
xfail ('nanquantile' ),
@@ -765,6 +757,8 @@ def test_vmapjvpall(self, device, dtype, op):
765
757
xfail ('nn.functional.max_pool3d' ),
766
758
xfail ('vdot' ),
767
759
xfail ('linalg.cross' ),
760
+ xfail ('nanmean' ),
761
+ xfail ('nansum' ),
768
762
xfail ('nn.functional.feature_alpha_dropout' , 'without_train' ),
769
763
xfail ('linalg.lu_factor' , '' ),
770
764
xfail ('nn.functional.dropout2d' , '' ),
@@ -782,7 +776,6 @@ def test_vmapjvpall(self, device, dtype, op):
782
776
xfail ('nn.functional.smooth_l1_loss' , '' ),
783
777
xfail ('nn.functional.max_unpool2d' , 'grad' ),
784
778
xfail ('nn.functional.soft_margin_loss' , '' ),
785
- xfail ('nn.functional.binary_cross_entropy_with_logits' , '' ),
786
779
xfail ('nn.functional.max_unpool1d' , 'grad' ),
787
780
xfail ('nn.functional.embedding' , '' ),
788
781
xfail ('lu_unpack' ),
@@ -1044,23 +1037,16 @@ def get_vjp(cotangents, *primals):
1044
1037
# RuntimeError: Trying to set a forward gradient that has a different size than that of the original Tensor,
1045
1038
# this is not supported. Tensor is of size [5, 2, 3] while the given forward gradient is of size [1, 2, 3].
1046
1039
xfail ('normal' , '' ),
1047
- xfail ('_masked.amax' , '' ),
1048
- xfail ('_masked.amin' , '' ),
1049
1040
xfail ('_masked.log_softmax' , '' ),
1050
1041
xfail ('_masked.softmax' , '' ),
1051
1042
xfail ('_masked.softmin' , '' ),
1052
- xfail ('amax' , '' ),
1053
- xfail ('amin' , '' ),
1054
1043
xfail ('cdist' , '' ),
1055
1044
xfail ('cholesky' , '' ),
1056
1045
xfail ('eig' , '' ),
1057
1046
xfail ('linalg.det' , '' ),
1058
- xfail ('linalg.matrix_norm' , '' ),
1059
1047
xfail ('linalg.slogdet' , '' ),
1060
1048
xfail ('logcumsumexp' , '' ),
1061
1049
xfail ('logdet' , '' ),
1062
- xfail ('nanmean' , '' ),
1063
- xfail ('nansum' , '' ),
1064
1050
xfail ('nn.functional.embedding_bag' , '' ),
1065
1051
xfail ('nn.functional.grid_sample' , '' ),
1066
1052
xfail ('nn.functional.hardsigmoid' , '' ),
@@ -1070,9 +1056,7 @@ def get_vjp(cotangents, *primals):
1070
1056
xfail ('nn.functional.softmin' , '' ),
1071
1057
xfail ('nn.functional.softmin' , 'with_dtype' ),
1072
1058
xfail ('renorm' , '' ),
1073
- xfail ('std_mean' , '' ),
1074
1059
xfail ('symeig' , '' ),
1075
- xfail ('var_mean' , '' ),
1076
1060
xfail ('nn.functional.feature_alpha_dropout' , 'with_train' ),
1077
1061
xfail ('nn.functional.kl_div' , '' ),
1078
1062
xfail ('pca_lowrank' , '' ),
@@ -1090,7 +1074,6 @@ def get_vjp(cotangents, *primals):
1090
1074
xfail ('scatter_reduce' , 'mean' ),
1091
1075
xfail ('scatter_reduce' , 'prod' ),
1092
1076
skip ('linalg.householder_product' , '' , device_type = 'cuda' ), # flaky, I'm not sure why
1093
- xfail ('nn.functional.binary_cross_entropy_with_logits' ),
1094
1077
}))
1095
1078
def test_jvpvjp (self , device , dtype , op ):
1096
1079
if not op .supports_autograd :
0 commit comments