@@ -304,6 +304,11 @@ def is_inplace(op, variant):
304
304
xfail ('tensor_split' ),
305
305
xfail ('to_sparse' ),
306
306
xfail ('nn.functional.ctc_loss' ),
307
+ skip ('nn.functional.feature_alpha_dropout' , 'with_train' ), # fails on cuda, runs okay on cpu
308
+ skip ('nn.functional.feature_alpha_dropout' , 'without_train' ), # fails on cuda, runs okay on cpu
309
+ skip ('pca_lowrank' , '' ), # fails on cuda, runs okay on cpu
310
+ skip ('svd_lowrank' , '' ), # fails on cuda, runs okay on cpu
311
+ skip ('nn.functional.dropout2d' , '' ), # fails on cuda, runs okay on cpu
307
312
}
308
313
309
314
@@ -364,6 +369,11 @@ def wrapped_fn(*args, **kwargs):
364
369
skip ('nn.functional.fractional_max_pool2d' ), # fails on cuda, runs okay on cpu
365
370
skip ('nn.functional.fractional_max_pool3d' ), # fails on cuda, runs okay on cpu
366
371
skip ('nn.functional.max_pool1d' ), # fails on cpu, runs okay on cuda
372
+ skip ('nn.functional.feature_alpha_dropout' , 'with_train' ), # fails on cuda, runs okay on cpu
373
+ skip ('nn.functional.feature_alpha_dropout' , 'without_train' ), # fails on cuda, runs okay on cpu
374
+ skip ('pca_lowrank' , '' ), # fails on cuda, runs okay on cpu
375
+ skip ('svd_lowrank' , '' ), # fails on cuda, runs okay on cpu
376
+ skip ('nn.functional.dropout2d' , '' ), # fails on cuda, runs okay on cpu
367
377
368
378
# See https://github.com/pytorch/pytorch/issues/69034
369
379
# RuntimeError: expected scalar type double but found float
@@ -394,8 +404,6 @@ def wrapped_fn(*args, **kwargs):
394
404
# Some kind of issue with unsymmetric tangent type
395
405
# Runtime Error: The tangent part of the matrix A should also be symmetric.
396
406
xfail ('linalg.eigh' ),
397
-
398
-
399
407
}))
400
408
@opsToleranceOverride ('TestOperators' , 'test_jvp' , (
401
409
tol1 ('nn.functional.conv_transpose3d' ,
@@ -430,6 +438,11 @@ def test_jvp(self, device, dtype, op):
430
438
@skipOps ('TestOperators' , 'test_vjp' , vjp_fail .union ({
431
439
skip ('nn.functional.fractional_max_pool2d' ), # fails on cpu, runs okay on cuda
432
440
skip ('nn.functional.fractional_max_pool3d' ), # fails on cpu, runs okay on cuda
441
+ xfail ('nn.functional.feature_alpha_dropout' , 'with_train' ),
442
+ xfail ('pca_lowrank' , '' ),
443
+ xfail ('nn.functional.dropout2d' , '' ),
444
+ xfail ('nn.functional.feature_alpha_dropout' , 'without_train' ),
445
+ xfail ('svd_lowrank' , '' ),
433
446
}))
434
447
@opsToleranceOverride ('TestOperators' , 'test_vjp' , (
435
448
tol1 ('nn.functional.conv_transpose3d' ,
@@ -613,6 +626,9 @@ def vjp_of_vjp(*args_and_cotangents):
613
626
xfail ('lu_solve' ),
614
627
xfail ('index_copy' ),
615
628
xfail ('nn.functional.gelu' , device_type = 'cpu' ),
629
+
630
+ xfail ('linalg.lu_factor' , '' ),
631
+ xfail ('scatter_reduce' , '' , device_type = 'cpu' ),
616
632
})
617
633
618
634
@ops (functorch_lagging_op_db + additional_op_db , allowed_dtypes = (torch .float ,))
@@ -710,6 +726,12 @@ def test_vmapvjp(self, device, dtype, op):
710
726
# Some kind of issue with unsymmetric tangent type
711
727
# Runtime Error: The tangent part of the matrix A should also be symmetric.
712
728
xfail ('linalg.eigh' ),
729
+
730
+ skip ('nn.functional.feature_alpha_dropout' , 'with_train' ),
731
+ skip ('pca_lowrank' , '' ),
732
+ skip ('nn.functional.dropout2d' , '' ),
733
+ skip ('nn.functional.feature_alpha_dropout' , 'without_train' ),
734
+ skip ('svd_lowrank' , '' ),
713
735
})
714
736
def test_vmapjvp (self , device , dtype , op ):
715
737
if is_inplace (op , op .get_op ()):
@@ -781,6 +803,13 @@ def test_vmapjvp(self, device, dtype, op):
781
803
# Some kind of issue with unsymmetric tangent type
782
804
# Runtime Error: The tangent part of the matrix A should also be symmetric.
783
805
xfail ('linalg.eigh' ),
806
+
807
+ xfail ('linalg.lu_factor' , '' ),
808
+ skip ('nn.functional.dropout2d' , '' ),
809
+ skip ('nn.functional.feature_alpha_dropout' , 'without_train' ),
810
+ skip ('pca_lowrank' , '' ),
811
+ skip ('svd_lowrank' , '' ),
812
+ skip ('nn.functional.feature_alpha_dropout' , 'with_train' ),
784
813
}
785
814
786
815
@ops (functorch_lagging_op_db , allowed_dtypes = (torch .float ,))
@@ -843,6 +872,15 @@ def test_vmapjvpall(self, device, dtype, op):
843
872
xfail ('nn.functional.max_pool3d' ),
844
873
xfail ('vdot' ),
845
874
xfail ('linalg.cross' ),
875
+ xfail ('nn.functional.feature_alpha_dropout' , 'without_train' ),
876
+ xfail ('linalg.lu_factor' , '' ),
877
+ xfail ('nn.functional.dropout2d' , '' ),
878
+ xfail ('nn.functional.kl_div' , '' ),
879
+ xfail ('pca_lowrank' , '' ),
880
+ xfail ('svd_lowrank' , '' ),
881
+ xfail ('linalg.lu_factor_ex' , '' ),
882
+ xfail ('nn.functional.feature_alpha_dropout' , 'with_train' ),
883
+ xfail ('special.log_ndtr' , '' ),
846
884
}))
847
885
@toleranceOverride ({torch .float32 : tol (atol = 1e-04 , rtol = 1e-04 )})
848
886
def test_vmapjvpall_has_batch_rule (self , device , dtype , op ):
@@ -884,6 +922,7 @@ def test():
884
922
xfail ('fmax' ),
885
923
xfail ('fft.ihfft' ),
886
924
xfail ('fft.rfft' ),
925
+ xfail ('special.log_ndtr' ),
887
926
xfail ('fft.rfftn' ),
888
927
xfail ('fill_' ),
889
928
xfail ('index_copy' ),
@@ -953,6 +992,15 @@ def test():
953
992
xfail ('istft' ),
954
993
xfail ('nn.functional.fractional_max_pool2d' ),
955
994
xfail ('linalg.tensorsolve' ),
995
+ xfail ('linalg.lu_factor' , '' ),
996
+ xfail ('nn.functional.feature_alpha_dropout' , 'with_train' ),
997
+ xfail ('nn.functional.kl_div' , '' ),
998
+ xfail ('scatter_reduce' , '' , device_type = 'cpu' ),
999
+ xfail ('pca_lowrank' , '' ),
1000
+ xfail ('nn.functional.dropout2d' , '' ),
1001
+ xfail ('nn.functional.feature_alpha_dropout' , 'without_train' ),
1002
+ xfail ('svd_lowrank' , '' ),
1003
+ xfail ('linalg.lu_factor_ex' , '' ),
956
1004
}))
957
1005
def test_vmapvjp_has_batch_rule (self , device , dtype , op ):
958
1006
if not op .supports_autograd :
@@ -1002,6 +1050,12 @@ def test():
1002
1050
xfail ('as_strided' ),
1003
1051
skip ('nn.functional.fractional_max_pool2d' ), # generator works on cpu, fails on cuda
1004
1052
skip ('solve' ),
1053
+ xfail ('column_stack' , '' ),
1054
+ xfail ('nn.functional.dropout2d' , '' ),
1055
+ xfail ('svd_lowrank' , '' ),
1056
+ xfail ('pca_lowrank' , '' ),
1057
+ xfail ('nn.functional.feature_alpha_dropout' , 'without_train' ),
1058
+ xfail ('nn.functional.feature_alpha_dropout' , 'with_train' ),
1005
1059
}))
1006
1060
def test_vjpvmap (self , device , dtype , op ):
1007
1061
# NB: there is no vjpvmap_has_batch_rule test because that is almost
@@ -1158,6 +1212,16 @@ def test_vjpvmap(self, device, dtype, op):
1158
1212
xfail ('symeig' , '' ),
1159
1213
xfail ('take' , '' ),
1160
1214
xfail ('var_mean' , '' ),
1215
+ xfail ('linalg.lu_factor' , '' ),
1216
+ xfail ('nn.functional.feature_alpha_dropout' , 'with_train' ),
1217
+ xfail ('nn.functional.kl_div' , '' ),
1218
+ xfail ('scatter_reduce' , '' , device_type = 'cpu' ),
1219
+ xfail ('pca_lowrank' , '' ),
1220
+ xfail ('nn.functional.dropout2d' , '' ),
1221
+ xfail ('nn.functional.feature_alpha_dropout' , 'without_train' ),
1222
+ xfail ('svd_lowrank' , '' ),
1223
+ xfail ('rsub' , '' ),
1224
+ xfail ('linalg.lu_factor_ex' , '' ),
1161
1225
}))
1162
1226
def test_jvpvjp (self , device , dtype , op ):
1163
1227
if not op .supports_autograd :
@@ -1256,6 +1320,7 @@ class TestDecompositionOpInfo(TestCase):
1256
1320
skip ('stft' ),
1257
1321
skip ('_masked.softmax' ),
1258
1322
skip ('_masked.normalize' ),
1323
+ xfail ('linalg.lu_factor' , '' ),
1259
1324
# Some weird matmul stuff with int64 matmuls
1260
1325
# inplace op
1261
1326
skip ('resize_' ),
0 commit comments