|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from copy import deepcopy |
| 4 | + |
| 5 | +import hydra |
| 6 | +import torch |
| 7 | + |
| 8 | +import torch.multiprocessing as mp |
| 9 | +import torch.nn as nn |
| 10 | +import torch.optim |
| 11 | +import tqdm |
| 12 | + |
| 13 | +from torchrl.collectors import SyncDataCollector |
| 14 | +from torchrl.objectives import A2CLoss |
| 15 | +from torchrl.objectives.value.advantages import GAE |
| 16 | + |
| 17 | +from torchrl.record.loggers import generate_exp_name, get_logger |
| 18 | +from utils_atari import make_parallel_env, make_ppo_models |
| 19 | + |
| 20 | + |
| 21 | +torch.set_float32_matmul_precision("high") |
| 22 | + |
| 23 | + |
| 24 | +class SharedAdam(torch.optim.Adam): |
| 25 | + def __init__(self, params, **kwargs): |
| 26 | + super().__init__(params, **kwargs) |
| 27 | + for group in self.param_groups: |
| 28 | + for p in group["params"]: |
| 29 | + state = self.state[p] |
| 30 | + state["step"] = torch.zeros(1) |
| 31 | + state["exp_avg"] = torch.zeros_like(p.data) |
| 32 | + state["exp_avg_sq"] = torch.zeros_like(p.data) |
| 33 | + state["exp_avg"].share_memory_() |
| 34 | + state["exp_avg_sq"].share_memory_() |
| 35 | + state["step"].share_memory_() |
| 36 | + |
| 37 | + |
| 38 | +class A3CWorker(mp.Process): |
| 39 | + def __init__(self, name, cfg, global_actor, global_critic, optimizer, logger=None): |
| 40 | + super().__init__() |
| 41 | + self.name = name |
| 42 | + self.cfg = cfg |
| 43 | + |
| 44 | + self.optimizer = optimizer |
| 45 | + |
| 46 | + self.device = cfg.loss.device or torch.device( |
| 47 | + "cuda:0" if torch.cuda.is_available() else "cpu" |
| 48 | + ) |
| 49 | + |
| 50 | + self.frame_skip = 4 |
| 51 | + self.total_frames = cfg.collector.total_frames // self.frame_skip |
| 52 | + self.frames_per_batch = cfg.collector.frames_per_batch // self.frame_skip |
| 53 | + self.mini_batch_size = cfg.loss.mini_batch_size // self.frame_skip |
| 54 | + self.test_interval = cfg.logger.test_interval // self.frame_skip |
| 55 | + |
| 56 | + self.global_actor = global_actor |
| 57 | + self.global_critic = global_critic |
| 58 | + self.local_actor = deepcopy(global_actor) |
| 59 | + self.local_critic = deepcopy(global_critic) |
| 60 | + |
| 61 | + self.logger = logger |
| 62 | + |
| 63 | + self.adv_module = GAE( |
| 64 | + gamma=cfg.loss.gamma, |
| 65 | + lmbda=cfg.loss.gae_lambda, |
| 66 | + value_network=self.local_critic, |
| 67 | + average_gae=True, |
| 68 | + vectorized=not cfg.compile.compile, |
| 69 | + device=self.device, |
| 70 | + ) |
| 71 | + self.loss_module = A2CLoss( |
| 72 | + actor_network=self.local_actor, |
| 73 | + critic_network=self.local_critic, |
| 74 | + loss_critic_type=cfg.loss.loss_critic_type, |
| 75 | + entropy_coef=cfg.loss.entropy_coef, |
| 76 | + critic_coef=cfg.loss.critic_coef, |
| 77 | + ) |
| 78 | + |
| 79 | + self.adv_module.set_keys(done="end-of-life", terminated="end-of-life") |
| 80 | + self.loss_module.set_keys(done="end-of-life", terminated="end-of-life") |
| 81 | + |
| 82 | + def update(self, batch, max_grad_norm=None): |
| 83 | + if max_grad_norm is None: |
| 84 | + max_grad_norm = self.cfg.optim.max_grad_norm |
| 85 | + |
| 86 | + loss = self.loss_module(batch) |
| 87 | + loss_sum = loss["loss_critic"] + loss["loss_objective"] + loss["loss_entropy"] |
| 88 | + loss_sum.backward() |
| 89 | + |
| 90 | + for local_param, global_param in zip( |
| 91 | + self.local_actor.parameters(), self.global_actor.parameters() |
| 92 | + ): |
| 93 | + global_param._grad = local_param.grad |
| 94 | + |
| 95 | + for local_param, global_param in zip( |
| 96 | + self.local_critic.parameters(), self.global_critic.parameters() |
| 97 | + ): |
| 98 | + global_param._grad = local_param.grad |
| 99 | + |
| 100 | + gn = torch.nn.utils.clip_grad_norm_( |
| 101 | + self.loss_module.parameters(), max_norm=max_grad_norm |
| 102 | + ) |
| 103 | + |
| 104 | + self.optimizer.step() |
| 105 | + self.optimizer.zero_grad(set_to_none=True) |
| 106 | + |
| 107 | + return ( |
| 108 | + loss.select("loss_critic", "loss_entropy", "loss_objective") |
| 109 | + .detach() |
| 110 | + .set("grad_norm", gn) |
| 111 | + ) |
| 112 | + |
| 113 | + def run(self): |
| 114 | + cfg = self.cfg |
| 115 | + |
| 116 | + collector = SyncDataCollector( |
| 117 | + create_env_fn=make_parallel_env( |
| 118 | + cfg.env.env_name, |
| 119 | + num_envs=cfg.env.num_envs, |
| 120 | + device=self.device, |
| 121 | + gym_backend=cfg.env.backend, |
| 122 | + ), |
| 123 | + policy=self.local_actor, |
| 124 | + frames_per_batch=self.frames_per_batch, |
| 125 | + total_frames=self.total_frames, |
| 126 | + device=self.device, |
| 127 | + storing_device=self.device, |
| 128 | + policy_device=self.device, |
| 129 | + compile_policy=False, |
| 130 | + cudagraph_policy=False, |
| 131 | + ) |
| 132 | + |
| 133 | + collected_frames = 0 |
| 134 | + num_network_updates = 0 |
| 135 | + pbar = tqdm.tqdm(total=self.total_frames) |
| 136 | + num_mini_batches = self.frames_per_batch // self.mini_batch_size |
| 137 | + total_network_updates = ( |
| 138 | + self.total_frames // self.frames_per_batch |
| 139 | + ) * num_mini_batches |
| 140 | + lr = cfg.optim.lr |
| 141 | + |
| 142 | + c_iter = iter(collector) |
| 143 | + total_iter = len(collector) |
| 144 | + |
| 145 | + for _ in range(total_iter): |
| 146 | + data = next(c_iter) |
| 147 | + |
| 148 | + metrics_to_log = {} |
| 149 | + frames_in_batch = data.numel() |
| 150 | + collected_frames += self.frames_per_batch * self.frame_skip |
| 151 | + pbar.update(frames_in_batch) |
| 152 | + |
| 153 | + episode_rewards = data["next", "episode_reward"][data["next", "terminated"]] |
| 154 | + if len(episode_rewards) > 0: |
| 155 | + episode_length = data["next", "step_count"][data["next", "terminated"]] |
| 156 | + metrics_to_log["train/reward"] = episode_rewards.mean().item() |
| 157 | + metrics_to_log[ |
| 158 | + "train/episode_length" |
| 159 | + ] = episode_length.sum().item() / len(episode_length) |
| 160 | + |
| 161 | + with torch.no_grad(): |
| 162 | + data = self.adv_module(data) |
| 163 | + data_reshape = data.reshape(-1) |
| 164 | + losses = [] |
| 165 | + |
| 166 | + mini_batches = data_reshape.split(self.mini_batch_size) |
| 167 | + for batch in mini_batches: |
| 168 | + alpha = 1.0 |
| 169 | + if cfg.optim.anneal_lr: |
| 170 | + alpha = 1 - (num_network_updates / total_network_updates) |
| 171 | + for group in self.optimizer.param_groups: |
| 172 | + group["lr"] = lr * alpha |
| 173 | + |
| 174 | + num_network_updates += 1 |
| 175 | + loss = self.update(batch).clone() |
| 176 | + losses.append(loss) |
| 177 | + |
| 178 | + losses = torch.stack(losses).float().mean() |
| 179 | + |
| 180 | + for key, value in losses.items(): |
| 181 | + metrics_to_log[f"train/{key}"] = value.item() |
| 182 | + |
| 183 | + metrics_to_log["train/lr"] = lr * alpha |
| 184 | + if self.logger: |
| 185 | + for key, value in metrics_to_log.items(): |
| 186 | + self.logger.log_scalar(key, value, collected_frames) |
| 187 | + collector.shutdown() |
| 188 | + |
| 189 | + |
| 190 | +@hydra.main(config_path="", config_name="config_atari", version_base="1.1") |
| 191 | +def main(cfg: DictConfig): # noqa: F821 |
| 192 | + |
| 193 | + global_actor, global_critic, global_critic_head = make_ppo_models( |
| 194 | + cfg.env.env_name, device=cfg.loss.device, gym_backend=cfg.env.backend |
| 195 | + ) |
| 196 | + global_model = nn.ModuleList([global_actor, global_critic_head]) |
| 197 | + global_model.share_memory() |
| 198 | + optimizer = SharedAdam(global_model.parameters(), lr=cfg.optim.lr) |
| 199 | + |
| 200 | + num_workers = cfg.multiprocessing.num_workers |
| 201 | + |
| 202 | + if num_workers is None: |
| 203 | + num_workers = mp.cpu_count() |
| 204 | + logger = None |
| 205 | + if cfg.logger.backend: |
| 206 | + exp_name = generate_exp_name("A3C", f"{cfg.logger.exp_name}_{cfg.env.env_name}") |
| 207 | + logger = get_logger( |
| 208 | + cfg.logger.backend, |
| 209 | + logger_name="a3c", |
| 210 | + experiment_name=exp_name, |
| 211 | + wandb_kwargs={ |
| 212 | + "config": dict(cfg), |
| 213 | + "project": cfg.logger.project_name, |
| 214 | + "group": cfg.logger.group_name, |
| 215 | + }, |
| 216 | + ) |
| 217 | + |
| 218 | + workers = [ |
| 219 | + A3CWorker(f"worker_{i}", cfg, global_actor, global_critic, optimizer, logger) |
| 220 | + for i in range(num_workers) |
| 221 | + ] |
| 222 | + [w.start() for w in workers] |
| 223 | + [w.join() for w in workers] |
| 224 | + |
| 225 | + |
| 226 | +if __name__ == "__main__": |
| 227 | + main() |
0 commit comments