|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | + |
| 4 | +# This source code is licensed under the license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import os |
| 8 | +from pathlib import Path |
| 9 | +from types import SimpleNamespace |
| 10 | +from typing import Any, Dict |
| 11 | + |
| 12 | +# Run command: |
| 13 | +# torchrun --nproc-per-node 4 dist_run.py |
| 14 | +import torch |
| 15 | +import torch.distributed as dist |
| 16 | +from torch.distributed.pipelining import PipelineStage, ScheduleGPipe |
| 17 | + |
| 18 | +from distributed.logging_utils import setup_logging |
| 19 | +# TODO - these are not distributed specific, consider moving to new package |
| 20 | +from distributed.safetensor_utils import (get_hf_config_file, |
| 21 | + get_hf_weight_map_and_path, |
| 22 | + load_safetensor_weights) |
| 23 | +from distributed.utils import Color as color, get_stage_size, build_gpu_memory_monitor, TrackTime, get_num_params |
| 24 | +from distributed.verification_utils import find_cpu_tensors |
| 25 | +from torchchat.cli.builder import TokenizerArgs, _initialize_tokenizer |
| 26 | +from torchchat.model import ModelArgs, Transformer |
| 27 | +from torchchat.utils.build_utils import set_precision |
| 28 | + |
| 29 | +try: |
| 30 | + from tokenizer.tiktoken import Tokenizer as TiktokenTokenizer |
| 31 | +except ImportError: |
| 32 | + TiktokenTokenizer = None |
| 33 | +try: |
| 34 | + from sentencepiece import SentencePieceProcessor |
| 35 | +except ImportError: |
| 36 | + SentencePieceProcessor = None |
| 37 | + |
| 38 | + |
| 39 | +# logger = setup_logging(__name__) |
| 40 | +from distributed.logging_utils import SingletonLogger |
| 41 | +logger = SingletonLogger.get_logger(__name__) |
| 42 | + |
| 43 | + |
| 44 | +NAME_TO_HF_MODEL_ID_AND_DTYPE = { |
| 45 | + "Transformer-2-7b-chat-hf": ("meta-llama/Llama-2-7b-chat-hf", torch.float16), |
| 46 | + "Meta-Llama-3-8B": ("meta-llama/Meta-Llama-3-8B-Instruct", torch.bfloat16), |
| 47 | +} |
| 48 | +CACHE_PRECISION = torch.bfloat16 |
| 49 | + |
| 50 | + |
| 51 | +def _init_distributed(): |
| 52 | + dist.init_process_group("nccl") |
| 53 | + rank = dist.get_rank() |
| 54 | + world_size = dist.get_world_size() |
| 55 | + # Assuming same number of GPUs per node |
| 56 | + torch.cuda.set_device(rank % torch.cuda.device_count()) |
| 57 | + return rank, world_size |
| 58 | + |
| 59 | + |
| 60 | +def _create_device_mesh(mesh_dimensions): |
| 61 | + return dist.init_device_mesh("cuda", mesh_dimensions, mesh_dim_names=("pp", "tp")) |
| 62 | + |
| 63 | + |
| 64 | +def dict_to_args(dictionary: Dict[str, Any]) -> SimpleNamespace: |
| 65 | + return SimpleNamespace(**dictionary) |
| 66 | + |
| 67 | + |
| 68 | +def _build_chat_tokenizer( |
| 69 | + model_base_name: str = "llama3", |
| 70 | +) -> SentencePieceProcessor | TiktokenTokenizer: |
| 71 | + # Create base args for tokenizer |
| 72 | + default_model_dir = Path( |
| 73 | + os.getenv("TORCHCHAT_MODELDIR", "~/.torchchat/model-cache") |
| 74 | + ).expanduser() |
| 75 | + |
| 76 | + tokenconfig = { |
| 77 | + "model_directory": default_model_dir, |
| 78 | + "model": model_base_name, |
| 79 | + "tokenizer_path": None, |
| 80 | + } |
| 81 | + args = dict_to_args(tokenconfig) |
| 82 | + tokenizer_args = TokenizerArgs.from_args(args) |
| 83 | + tokenizer = _initialize_tokenizer(tokenizer_args) |
| 84 | + assert tokenizer is not None, f"Failed to get tokenizer using {tokenconfig=}" |
| 85 | + logger.info( |
| 86 | + f"using tokenizer = {tokenizer.__class__.__module__}.{tokenizer.__class__.__name__}" |
| 87 | + ) |
| 88 | + return tokenizer |
| 89 | + |
| 90 | +def _encode_string(string, tokenizer, bos=True, device="cuda", dtype=torch.int64): |
| 91 | + tokens = tokenizer.encode(string) |
| 92 | + if bos: |
| 93 | + tokens = [tokenizer.bos_id()] + tokens |
| 94 | + logger.info(f"***** encoding: {tokens=}, {string=}") |
| 95 | + return torch.tensor(tokens, dtype=dtype, device=device) |
| 96 | + |
| 97 | +def _logits_to_probs( |
| 98 | + logits, |
| 99 | + temperature=1.0, |
| 100 | + ): |
| 101 | + logits = logits / max( |
| 102 | + temperature, 1e-5 if logits.dtype != torch.float16 else 1e-3 |
| 103 | + ) |
| 104 | + probs = torch.nn.functional.softmax(logits, dim=-1) |
| 105 | + return probs |
| 106 | + |
| 107 | +def _load_model_weights(stage_module, hf_model_name, device, model_config): |
| 108 | + """Load the weights from the safetensor file(s) into the model stage. |
| 109 | + Model config is needed b/c we permute wq and wk weights based on attn heads. |
| 110 | + """ |
| 111 | + |
| 112 | + weight_map, weight_path, key_map = get_hf_weight_map_and_path(hf_model_name) |
| 113 | + |
| 114 | + num_loaded_weights, num_missing_weights = load_safetensor_weights( |
| 115 | + stage_module, |
| 116 | + weight_map, |
| 117 | + weight_path, |
| 118 | + key_map, |
| 119 | + device, |
| 120 | + model_config=model_config, |
| 121 | + ) |
| 122 | + logger.info( |
| 123 | + f"Success - Loaded {num_loaded_weights} weights, {num_missing_weights} missing weights" |
| 124 | + ) |
| 125 | + if num_missing_weights > 0: |
| 126 | + raise ValueError(f"Missing {num_missing_weights} weights") |
| 127 | + |
| 128 | +def _multinomial_sample_one_no_sync( |
| 129 | + probs_sort, |
| 130 | + ): # Does multinomial sampling without a cuda synchronization |
| 131 | + q = torch.empty_like(probs_sort).exponential_(1) |
| 132 | + return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) |
| 133 | + |
| 134 | +def _cleanup(): |
| 135 | + dist.barrier() |
| 136 | + dist.destroy_process_group() |
| 137 | + |
| 138 | +def _get_hf_tokenizer(hf_model_name): |
| 139 | + """Load tokenizer from HF model id. note - use torchchat tokenizer as default""" |
| 140 | + from transformers import AutoTokenizer |
| 141 | + tokenizer = AutoTokenizer.from_pretrained(hf_model_name) |
| 142 | + assert tokenizer is not None, f"Failed to load tokenizer for {hf_model_name}" |
| 143 | + logger.info(f"Loaded tokenizer for {hf_model_name}") |
| 144 | + tokenizer.pad_token = tokenizer.eos_token |
| 145 | + return tokenizer |
| 146 | + |
| 147 | + |
| 148 | +def main(): |
| 149 | + rank, world_size = _init_distributed() |
| 150 | + gpu_memory_monitor, device_info = build_gpu_memory_monitor() |
| 151 | + logger.info(f"{color.yellow} {device_info}{color.reset}") |
| 152 | + |
| 153 | + |
| 154 | + MODEL_NAME = "Meta-Llama-3-8B" # "Transformer-2-7b-chat-hf" |
| 155 | + |
| 156 | + config = ModelArgs.from_name(MODEL_NAME).text_transformer_args |
| 157 | + logger.info(f"Chat Model Config: {config}") |
| 158 | + |
| 159 | + |
| 160 | + tokenizer = _build_chat_tokenizer() |
| 161 | + logger.info(f"built tokenizer {tokenizer=}") |
| 162 | + |
| 163 | + hf_model_name, model_dtype = NAME_TO_HF_MODEL_ID_AND_DTYPE[MODEL_NAME] |
| 164 | + logger.info(f"Using HF model weights from {hf_model_name} and dtype {model_dtype}") |
| 165 | + |
| 166 | + |
| 167 | + hf_tokenizer = _get_hf_tokenizer(hf_model_name) |
| 168 | + |
| 169 | + set_precision(CACHE_PRECISION) |
| 170 | + logger.info(f"Using cache precision {CACHE_PRECISION}") |
| 171 | + |
| 172 | + hf_config = get_hf_config_file(hf_model_name) |
| 173 | + if hf_config is None: |
| 174 | + raise ValueError(f"Config file not found for model id {hf_model_name}") |
| 175 | + logger.info(f"Using HF model weights from {hf_model_name}") |
| 176 | + |
| 177 | + # Assuming 2 pipeline stages, feel free to change this as long as the |
| 178 | + # asserts are satisfied |
| 179 | + pp_degree = 4 |
| 180 | + assert world_size % pp_degree == 0 |
| 181 | + assert config.n_layers % pp_degree == 0 |
| 182 | + |
| 183 | + # Sequence parallel is enabled in this program |
| 184 | + # Sequence parallel = Tensor parallel + dividing sequence by tp_degree at layer boundary |
| 185 | + sp_degree = world_size // pp_degree |
| 186 | + |
| 187 | + # Create device mesh |
| 188 | + mesh_dimensions = (pp_degree, sp_degree) |
| 189 | + device_mesh = _create_device_mesh(mesh_dimensions) |
| 190 | + tp_mesh = device_mesh["tp"] |
| 191 | + pp_mesh = device_mesh["pp"] |
| 192 | + tp_rank = tp_mesh.get_local_rank() |
| 193 | + pp_rank = pp_mesh.get_local_rank() |
| 194 | + |
| 195 | + # Assuming same number of GPUs per node |
| 196 | + device = torch.device(f"cuda:{rank % torch.cuda.device_count()}") |
| 197 | + |
| 198 | + # Fill in PP configs |
| 199 | + config.stage_idx = pp_rank |
| 200 | + config.n_stages = pp_degree |
| 201 | + |
| 202 | + with device: |
| 203 | + model = Transformer(config) |
| 204 | + |
| 205 | + model.setup_caches(1, 4096) |
| 206 | + |
| 207 | + # Distribute model on TP mesh |
| 208 | + model.distribute(tp_mesh) |
| 209 | + logger.info(f"Model: {model}") |
| 210 | + |
| 211 | + mbs = 1 # number of micro-batches |
| 212 | + mb_size = 1 # micro-batch size |
| 213 | + batch_size = mbs * mb_size # total batch size |
| 214 | + seqlen = 4096 # sequence length |
| 215 | + dim = 4096 # embedding dimension |
| 216 | + assert seqlen % sp_degree == 0 |
| 217 | + |
| 218 | + mb_ids = torch.randint(0, config.vocab_size, (mb_size, seqlen), device=device) |
| 219 | + activation = torch.rand( |
| 220 | + mb_size, seqlen // sp_degree, dim, device=device, dtype=model_dtype |
| 221 | + ) |
| 222 | + example_args = mb_ids if pp_rank == 0 else activation |
| 223 | + |
| 224 | + # Load weights |
| 225 | + with TrackTime() as timer: |
| 226 | + logger.info(f"Loading weights for {pp_rank=} on {device=}") |
| 227 | + _load_model_weights(model, hf_model_name, device=device, model_config=config) |
| 228 | + logger.info(f"{color.green}Total weight loading time: {timer.get_time()} {timer.unit} for {rank}{color.reset}") |
| 229 | + |
| 230 | + # info on stage size and params |
| 231 | + stage_size, stage_size_formatted = get_stage_size(model) |
| 232 | + stage_num_params = get_num_params(model) |
| 233 | + logger.info(f"Stage rank {rank} has {color.blue}{stage_num_params} params{color.reset}, Size: {color.blue}{stage_size_formatted}{color.reset}\n") |
| 234 | + |
| 235 | + # Setup input position |
| 236 | + # input_pos for prefill: a list of increasing integers from 0 to seqlen |
| 237 | + input_pos = torch.arange(seqlen, device=device) |
| 238 | + model.setup_input_pos(input_pos) |
| 239 | + model.eval() |
| 240 | + |
| 241 | + logger.info(f"Creating pipeline stage {pp_rank=}, {pp_degree=}") |
| 242 | + stage = PipelineStage( |
| 243 | + model, |
| 244 | + pp_rank, |
| 245 | + pp_degree, |
| 246 | + device, |
| 247 | + input_args=(example_args,), |
| 248 | + group=pp_mesh.get_group(), |
| 249 | + ) |
| 250 | + |
| 251 | + # this check confirms that there are no cpu tensors in the model..we expect this to be true. |
| 252 | + cpu_tensors = find_cpu_tensors(stage.submod) |
| 253 | + # logger.info(f"Found {len(cpu_tensors)} cpu tensors: {cpu_tensors}") |
| 254 | + if len(cpu_tensors) > 0: |
| 255 | + raise ValueError("Found cpu tensors in stage") |
| 256 | + |
| 257 | + # TODO: this can likely be removed after we prove out a few more models |
| 258 | + # verify dtypes for model - expect all to be model_dtype except for bool causal_mask atm. |
| 259 | + # dtype_count, dtype_locations, fp32_locations = record_module_dtypes(stage.submod) |
| 260 | + # logger.info( |
| 261 | + # f"Stage Dtypes - Found {len(dtype_count)} dtypes: {dtype_count.items()}" |
| 262 | + # ) |
| 263 | + # assert ( |
| 264 | + # len(dtype_count) == 2 |
| 265 | + # ), f"Expected 2 dtypes in model after checkpoint loading: {model_dtype} and {torch.bool}" |
| 266 | + |
| 267 | + #input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), device=device) |
| 268 | + #logger.info(f"Input: {input_ids.dtype=}, {input_ids.shape=}, {input_ids.device=}") |
| 269 | + |
| 270 | + prompt = "what is snow?" |
| 271 | + input_ids = _encode_string(prompt, tokenizer, device, dtype=torch.int64) |
| 272 | + |
| 273 | + prompt_len = input_ids.size(0) |
| 274 | + start_pos = 0 |
| 275 | + |
| 276 | + # create a padded tensor for the input prompt |
| 277 | + max_new_tokens = min(seqlen, seqlen - start_pos - prompt_len) |
| 278 | + token_buffer_size = prompt_len + max_new_tokens |
| 279 | + |
| 280 | + seq = torch.full((1, token_buffer_size), tokenizer.eos_id(), dtype=torch.int64, device=device) |
| 281 | + seq[0, :prompt_len] = input_ids |
| 282 | + |
| 283 | + |
| 284 | + schedule = ScheduleGPipe(stage, mbs) |
| 285 | + logger.info(f"Created schedule: {schedule}") |
| 286 | + |
| 287 | + with torch.no_grad(): # .inference_mode(): |
| 288 | + if pp_rank == 0: |
| 289 | + schedule.step(seq) |
| 290 | + else: |
| 291 | + output = schedule.step() |
| 292 | + |
| 293 | +# Decoding |
| 294 | + if pp_rank == pp_degree - 1 and tp_rank == 0: |
| 295 | + |
| 296 | + next_token_logits = output[:,prompt_len-1, :] |
| 297 | + |
| 298 | + logger.info(f"{next_token_logits=}") |
| 299 | + logger.info(f"{next_token_logits.shape=}") |
| 300 | + |
| 301 | + next_token = torch.argmax(next_token_logits, dim=-1) |
| 302 | + |
| 303 | + # self.tokenizer.decode([period_id] + x.tolist())[1:] |
| 304 | + next_token_decoded = tokenizer.decode((next_token.tolist())) |
| 305 | + |
| 306 | + logger.info(f"\n\n{color.green}====>>>> {color.blue} {next_token_decoded=}, {next_token}\n{color.reset}") |
| 307 | + res_mem_gib, res_mem_pct = gpu_memory_monitor.get_peak_stats() |
| 308 | + logger.info(f"{color.blue} Memory used: {color.green}{res_mem_pct:.3f} %, {color.magenta}{res_mem_gib:.3f} GB{color.reset}") |
| 309 | + |
| 310 | + |
| 311 | + |
| 312 | + if pp_rank == pp_degree - 1 and tp_rank == 0: |
| 313 | + response = [] |
| 314 | + response.append(next_token_decoded) |
| 315 | + |
| 316 | + token_array = [19435, 374, 16054] |
| 317 | + for i in range(len(token_array)): |
| 318 | + prompt_len += 1 |
| 319 | + newest_token = token_array[i] |
| 320 | + next_token_tensor = torch.tensor([newest_token], dtype=torch.int64, device=device) |
| 321 | + seq[0, prompt_len] = next_token_tensor |
| 322 | + if pp_rank == pp_degree - 1 and tp_rank == 0: |
| 323 | + next_token_decoded = tokenizer.decode(next_token_tensor.tolist()) |
| 324 | + response.append(next_token_decoded) |
| 325 | + |
| 326 | + pretend_next_token = token_array[0] |
| 327 | + if pretend_next_token != tokenizer.eos_id(): |
| 328 | + |
| 329 | + for i in range(1): |
| 330 | + logger.info(f"running loop decoding, iter {i}") |
| 331 | + prompt_len += 1 |
| 332 | + newest_token = token_array[i] |
| 333 | + next_token_tensor = torch.tensor(newest_token, dtype=torch.int64, device=device) |
| 334 | + seq[0, prompt_len] = next_token_tensor |
| 335 | + |
| 336 | + with torch.no_grad(): # .inference_mode(): |
| 337 | + if pp_rank == 0: |
| 338 | + schedule.step(seq) |
| 339 | + else: |
| 340 | + output = schedule.step() |
| 341 | + |
| 342 | + if pp_rank == pp_degree - 1 and tp_rank == 0: |
| 343 | + next_token_logits = output[:,prompt_len-1, :] |
| 344 | + |
| 345 | + logger.info(f"{next_token_logits=}") |
| 346 | + logger.info(f"{next_token_logits.shape=}") |
| 347 | + next_token = torch.argmax(next_token_logits, dim=-1) |
| 348 | + |
| 349 | + # self.tokenizer.decode([period_id] + x.tolist())[1:] |
| 350 | + next_token_decoded = tokenizer.decode((next_token.tolist())) |
| 351 | + logger.info(f"\n\n{color.green}====>>>> {color.blue} {next_token_decoded=}, {next_token}\n{color.reset}") |
| 352 | + |
| 353 | + seq[0, prompt_len] = next_token |
| 354 | + logger.info(f"{seq= }") |
| 355 | + response.append(next_token_decoded) |
| 356 | + |
| 357 | + logger.info(f"\n\n{color.green} After {i=} iters ====>>>> {color.blue} {response}\n{color.reset}") |
| 358 | + |
| 359 | + |
| 360 | + |
| 361 | + |
| 362 | + |
| 363 | + logger.info( |
| 364 | + f"{color.green}Success{color.white} - {color.blue}Rank {rank} has completed.{color.reset}" |
| 365 | + ) |
| 366 | + |
| 367 | + _cleanup() |
| 368 | + |
| 369 | + |
| 370 | +if __name__ == "__main__": |
| 371 | + main() |
0 commit comments