|
| 1 | +import torch |
| 2 | +from typing import Any, Dict, Optional, Tuple |
| 3 | +from torchchat.utils.build_utils import find_multiple, get_precision |
| 4 | + |
| 5 | +# Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L77 |
| 6 | +def hf_precompute_freqs_cis(dim: int, end: int, theta: float): |
| 7 | + freqs = 1.0 / ( |
| 8 | + theta |
| 9 | + ** (torch.arange(0, dim, 2, device="cpu", dtype=torch.int64).float() / dim) |
| 10 | + ) |
| 11 | + # pyre-ignore Undefined attribute [16]: `float` has no attribute `device`. |
| 12 | + t = torch.arange(end, device=freqs.device, dtype=torch.int64).type_as( |
| 13 | + freqs # pyre-ignore |
| 14 | + ) |
| 15 | + freqs = torch.outer(t, freqs).float() # pyre-ignore |
| 16 | + emb = torch.cat((freqs, freqs), dim=-1) |
| 17 | + freqs_cos = torch.cos(emb) |
| 18 | + freqs_sin = torch.sin(emb) |
| 19 | + return freqs_cos, freqs_sin |
| 20 | + |
| 21 | + |
| 22 | +def precompute_freqs_cis( |
| 23 | + n_elem: int, |
| 24 | + seq_len: int, |
| 25 | + base: int = 10000, |
| 26 | + dtype=None, |
| 27 | + rope_scaling: Optional[Dict[str, Any]] = None, |
| 28 | +): |
| 29 | + if not dtype: |
| 30 | + dtype = get_precision() |
| 31 | + freqs = 1.0 / ( |
| 32 | + base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) |
| 33 | + ) |
| 34 | + t = torch.arange(seq_len, device=freqs.device) |
| 35 | + if rope_scaling is not None: |
| 36 | + freqs = apply_scaling(freqs, rope_scaling) |
| 37 | + freqs = torch.outer(t, freqs) |
| 38 | + freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
| 39 | + cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) |
| 40 | + return cache.to(dtype=dtype) |
| 41 | + |
| 42 | +# Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L135 |
| 43 | +def rotate_half(x): |
| 44 | + """Rotates half the hidden dims of the input.""" |
| 45 | + x1 = x[..., : x.shape[-1] // 2] |
| 46 | + x2 = x[..., x.shape[-1] // 2 :] |
| 47 | + return torch.cat((-x2, x1), dim=-1) |
| 48 | + |
| 49 | + |
| 50 | +def hf_apply_rotary_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
| 51 | + """Applies Rotary Position Embedding to the query and key tensors. |
| 52 | +
|
| 53 | + Args: |
| 54 | + q (`torch.Tensor`): The query tensor. |
| 55 | + k (`torch.Tensor`): The key tensor. |
| 56 | + cos (`torch.Tensor`): The cosine part of the rotary embedding. |
| 57 | + sin (`torch.Tensor`): The sine part of the rotary embedding. |
| 58 | + position_ids (`torch.Tensor`, *optional*): |
| 59 | + Deprecated and unused. |
| 60 | + unsqueeze_dim (`int`, *optional*, defaults to 1): |
| 61 | + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
| 62 | + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
| 63 | + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
| 64 | + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
| 65 | + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
| 66 | + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
| 67 | + Returns: |
| 68 | + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
| 69 | + """ |
| 70 | + cos = cos.unsqueeze(unsqueeze_dim) |
| 71 | + sin = sin.unsqueeze(unsqueeze_dim) |
| 72 | + q_embed = (q * cos) + (rotate_half(q) * sin) |
| 73 | + k_embed = (k * cos) + (rotate_half(k) * sin) |
| 74 | + return q_embed, k_embed |
| 75 | + |
| 76 | +def apply_rotary_emb(x, freqs_cis): |
| 77 | + xshaped = x.float().reshape(*x.shape[:-1], -1, 2) |
| 78 | + freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) |
| 79 | + x_out2 = torch.stack( |
| 80 | + [ |
| 81 | + xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], |
| 82 | + xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], |
| 83 | + ], |
| 84 | + -1, |
| 85 | + ) |
| 86 | + |
| 87 | + x_out2 = x_out2.flatten(3) |
| 88 | + return x_out2.type_as(x) |
| 89 | + |
| 90 | + |
| 91 | +# 比较函数 |
| 92 | +def compare_methods(): |
| 93 | + torch.manual_seed(0) |
| 94 | + x = torch.randn(1, 636, 32, 128) |
| 95 | + |
| 96 | + # 设置参数 |
| 97 | + n_elem = 128 |
| 98 | + seq_len = 1536 |
| 99 | + base = 10000 |
| 100 | + dtype = None |
| 101 | + rope_scaling = None |
| 102 | + |
| 103 | + all_freq_cis = precompute_freqs_cis(n_elem, seq_len, base, dtype, rope_scaling) |
| 104 | + input_pos = torch.arange( |
| 105 | + x.shape[1], |
| 106 | + device=x.device, |
| 107 | + dtype=torch.int, |
| 108 | + ) |
| 109 | + freq_cis = all_freq_cis[input_pos] |
| 110 | + x_out1 = apply_rotary_emb(x, freq_cis) |
| 111 | + |
| 112 | + |
| 113 | + dim = 128 |
| 114 | + end = 1536 |
| 115 | + theta = 10000.0 |
| 116 | + freqs_cos, freqs_sin = hf_precompute_freqs_cis(dim, end, theta) |
| 117 | + fc, fs = freqs_cos[:x.shape[1]], freqs_sin[:x.shape[1]] |
| 118 | + x_out2, _ = hf_apply_rotary_emb(x, x, fc, fs) |
| 119 | + |
| 120 | + print(x_out1) |
| 121 | + print("************************") |
| 122 | + print(x_out2) |
| 123 | + |
| 124 | + |
| 125 | +if __name__ == "__main__": |
| 126 | + compare_methods() |
0 commit comments