@@ -348,7 +348,7 @@ The PatchPredictor class runs a CNN-based classifier written in PyTorch.
348
348
- Alternatively, you can pass ``pretrained_model `` as a string
349
349
argument. This specifies the CNN model that performs the prediction,
350
350
and it must be one of the models listed
351
- `here <https://tia-toolbox.readthedocs.io/en/latest/usage. html?highlight=pretrained%20models #tiatoolbox.models.architecture.get_pretrained_model >`__.
351
+ `here <https://tia-toolbox.readthedocs.io/en/stable/_autosummary/tiatoolbox.models.architecture.get_pretrained_model. html#tiatoolbox.models.architecture.get_pretrained_model >`__.
352
352
The command will look like this:
353
353
``predictor = PatchPredictor(pretrained_model='resnet18-kather100k', pretrained_weights=weights_path, batch_size=32) ``.
354
354
- ``pretrained_weights ``: When using a ``pretrained_model ``, the
@@ -621,7 +621,7 @@ results. Here are the arguments and their descriptions:
621
621
which is equivalent to level 0. In general, this is the level of
622
622
greatest resolution. In this particular case, the image has only one
623
623
level. More information can be found in the
624
- `documentation <https://tia-toolbox.readthedocs.io/en/latest/usage.html?highlight= WSIReader.read_rect #tiatoolbox.wsicore.wsireader.WSIReader.read_rect >`__.
624
+ `documentation <https://tia-toolbox.readthedocs.io/en/stable/_autosummary/tiatoolbox.wsicore.wsireader. WSIReader.html #tiatoolbox.wsicore.wsireader.WSIReader.read_rect >`__.
625
625
- ``masks ``: A list of paths corresponding to the masks of WSIs in the
626
626
``imgs `` list. These masks specify the regions in the original WSIs
627
627
from which we want to extract patches. If the mask of a particular
0 commit comments