Skip to content

Commit 2fbdbb5

Browse files
committed
Automated tutorials push
1 parent 170aeeb commit 2fbdbb5

File tree

201 files changed

+13357
-13246
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

201 files changed

+13357
-13246
lines changed

_downloads/0aec568a42e89122e5ca293c86289287/tensorboard_profiler_tutorial.ipynb

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,11 @@
2323
"This tutorial demonstrates how to use TensorBoard plugin with PyTorch\n",
2424
"Profiler to detect performance bottlenecks of the model.\n",
2525
"\n",
26+
"<div style=\"background-color: #e94f3b; color: #fff; font-weight: 700; padding-left: 10px; padding-top: 5px; padding-bottom: 5px\"><strong>WARNING:</strong></div>\n",
27+
"<div style=\"background-color: #f3f4f7; padding-left: 10px; padding-top: 10px; padding-bottom: 10px; padding-right: 10px\">\n",
28+
"<p>The TensorBoard integration with the PyTorch profiler is nowdeprecated. Instead, use Perfetto or the Chrome trace toview <code>trace.json</code> files. After<a href=\"https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html#using-tracing-functionality\">generating a trace</a>,simply drag the <code>trace.json</code> into <a href=\"https://ui.perfetto.dev/\">Perfetto UI</a>or <code>chrome://tracing</code> to visualize your profile.</p>\n",
29+
"</div>\n",
30+
"\n",
2631
"Introduction\n",
2732
"------------\n",
2833
"\n",

_downloads/30bcc2970bf630097b13789b5cdcea48/hyperparameter_tuning_tutorial.ipynb

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,9 +29,8 @@
2929
"of parameters. [Ray Tune](https://docs.ray.io/en/latest/tune.html) is an\n",
3030
"industry standard tool for distributed hyperparameter tuning. Ray Tune\n",
3131
"includes the latest hyperparameter search algorithms, integrates with\n",
32-
"TensorBoard and other analysis libraries, and natively supports\n",
33-
"distributed training through [Ray\\'s distributed machine learning\n",
34-
"engine](https://ray.io/).\n",
32+
"various analysis libraries, and natively supports distributed training\n",
33+
"through [Ray\\'s distributed machine learning engine](https://ray.io/).\n",
3534
"\n",
3635
"In this tutorial, we will show you how to integrate Ray Tune into your\n",
3736
"PyTorch training workflow. We will extend [this tutorial from the\n",

_downloads/3195443a0ced3cabc0ad643537bdb5cd/introyt1_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
{
3535
"cell_type": "code",
3636
"execution_count": null,
37-
"id": "12331fc4",
37+
"id": "ed405304",
3838
"metadata": {},
3939
"outputs": [],
4040
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "markdown",
53-
"id": "f9e5fcc6",
53+
"id": "77d13a80",
5454
"metadata": {},
5555
"source": [
5656
"\n",

_downloads/4355e2cef7d17548f1e25f97a62828c4/template_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@
3131
{
3232
"cell_type": "code",
3333
"execution_count": null,
34-
"id": "82871af4",
34+
"id": "fbe67e7d",
3535
"metadata": {},
3636
"outputs": [],
3737
"source": [
@@ -47,7 +47,7 @@
4747
},
4848
{
4949
"cell_type": "markdown",
50-
"id": "39a0e3f0",
50+
"id": "97f1179f",
5151
"metadata": {},
5252
"source": [
5353
"\n",

_downloads/63a0f0fc7b3ffb15d3a5ac8db3d521ee/tensors_deeper_tutorial.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
{
3535
"cell_type": "code",
3636
"execution_count": null,
37-
"id": "ae60a0fc",
37+
"id": "87ff77a3",
3838
"metadata": {},
3939
"outputs": [],
4040
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "markdown",
53-
"id": "1d078d59",
53+
"id": "af669fe5",
5454
"metadata": {},
5555
"source": [
5656
"\n",

_downloads/67e47b6d6793c700666471b688068f72/tensorboard_profiler_tutorial.py

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,14 @@
44
This tutorial demonstrates how to use TensorBoard plugin with PyTorch Profiler
55
to detect performance bottlenecks of the model.
66
7+
.. warning::
8+
The TensorBoard integration with the PyTorch profiler is now
9+
deprecated. Instead, use Perfetto or the Chrome trace to
10+
view ``trace.json`` files. After
11+
`generating a trace <https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html#using-tracing-functionality>`__,
12+
simply drag the ``trace.json`` into `Perfetto UI <https://ui.perfetto.dev/>`__
13+
or ``chrome://tracing`` to visualize your profile.
14+
715
Introduction
816
------------
917
PyTorch 1.8 includes an updated profiler API capable of

_downloads/74b90fda9cec339519e5ef764956100f/profiler_recipe.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -459,7 +459,6 @@ def trace_handler(p):
459459
#
460460
# Take a look at the following recipes/tutorials to continue your learning:
461461
#
462-
# - `PyTorch Benchmark <https://pytorch.org/tutorials/recipes/recipes/benchmark.html>`_
463-
# - `PyTorch Profiler with TensorBoard <https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html>`_ tutorial
464-
# - `Visualizing models, data, and training with TensorBoard <https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html>`_ tutorial
462+
# - `PyTorch Benchmark <https://pytorch.org/tutorials/recipes/recipes/benchmark.html>`_
463+
# - `Visualizing models, data, and training with TensorBoard <https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html>`_ tutorial
465464
#

_downloads/770632dd3941d2a51b831c52ded57aa2/trainingyt.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
{
3636
"cell_type": "code",
3737
"execution_count": null,
38-
"id": "eea127d7",
38+
"id": "1fc019a2",
3939
"metadata": {},
4040
"outputs": [],
4141
"source": [
@@ -51,7 +51,7 @@
5151
},
5252
{
5353
"cell_type": "markdown",
54-
"id": "61b46529",
54+
"id": "dce60215",
5555
"metadata": {},
5656
"source": [
5757
"\n",

_downloads/b2c9c15033f17c2bdf31c864f9d39c76/profiler_recipe.ipynb

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -731,9 +731,6 @@
731731
"\n",
732732
"- [PyTorch\n",
733733
" Benchmark](https://pytorch.org/tutorials/recipes/recipes/benchmark.html)\n",
734-
"- [PyTorch Profiler with\n",
735-
" TensorBoard](https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html)\n",
736-
" tutorial\n",
737734
"- [Visualizing models, data, and training with\n",
738735
" TensorBoard](https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html)\n",
739736
" tutorial\n"

_downloads/b2e3bdbf14ea1e9b3a80770f0a498037/hyperparameter_tuning_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
Fortunately, there are tools that help with finding the best combination of parameters.
1111
`Ray Tune <https://docs.ray.io/en/latest/tune.html>`_ is an industry standard tool for
1212
distributed hyperparameter tuning. Ray Tune includes the latest hyperparameter search
13-
algorithms, integrates with TensorBoard and other analysis libraries, and natively
13+
algorithms, integrates with various analysis libraries, and natively
1414
supports distributed training through `Ray's distributed machine learning engine
1515
<https://ray.io/>`_.
1616

0 commit comments

Comments
 (0)