Skip to content

Commit 5881840

Browse files
committed
Fix code block indentation by removing extra spaces before ::
1 parent dfbcbd5 commit 5881840

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

beginner_source/introyt/introyt1_tutorial.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -304,20 +304,20 @@ def num_flat_features(self, x):
304304
# standard deviations (second tuple) of the rgb values of the images in
305305
# the dataset. You can calculate these values yourself by running these
306306
# few lines of code:
307-
# ::
308307
#
309-
# from torch.utils.data import ConcatDataset
310-
# transform = transforms.Compose([transforms.ToTensor()])
311-
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
308+
# ::
309+
# from torch.utils.data import ConcatDataset
310+
# transform = transforms.Compose([transforms.ToTensor()])
311+
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
312312
# download=True, transform=transform)
313313
#
314-
# #stack all train images together into a tensor of shape
315-
# #(50000, 3, 32, 32)
316-
# x = torch.stack([sample[0] for sample in ConcatDataset([trainset])])
314+
# # stack all train images together into a tensor of shape
315+
# # (50000, 3, 32, 32)
316+
# x = torch.stack([sample[0] for sample in ConcatDataset([trainset])])
317317
#
318-
# #get the mean of each channel
319-
# mean = torch.mean(x, dim=(0,2,3)) #tensor([0.4914, 0.4822, 0.4465])
320-
# std = torch.std(x, dim=(0,2,3)) #tensor([0.2470, 0.2435, 0.2616])
318+
# # get the mean of each channel
319+
# mean = torch.mean(x, dim=(0,2,3)) # tensor([0.4914, 0.4822, 0.4465])
320+
# std = torch.std(x, dim=(0,2,3)) # tensor([0.2470, 0.2435, 0.2616])
321321
#
322322
#
323323
# There are many more transforms available, including cropping, centering,

0 commit comments

Comments
 (0)