29
29
import torch .optim as optim
30
30
import albumentations as A
31
31
import numpy as np
32
-
32
+ import torch
33
33
34
34
from torchvision .datasets import CIFAR100 ,CIFAR10 ,MNIST ,ImageNet
35
35
import os
@@ -409,10 +409,11 @@ def accuracy(output, target, topk=(1,)):
409
409
# on accuracy.
410
410
#
411
411
412
+ model_version = 'B'
412
413
model = Model_vgg (model_version ,num_classes )
413
414
criterion = nn .CrossEntropyLoss ()
414
415
415
- optimizer = optim .SGD (model .parameters (), lr = lr , weight_decay = weight_decay ,nesterov = nestrov , momentum = momentum )
416
+ optimizer = optim .SGD (model .parameters (), lr = lr , weight_decay = weight_decay ,momentum = momentum )
416
417
scheduler = optim .lr_scheduler .ReduceLROnPlateau (optimizer , 'max' ,patience = 10 ,threshold = 1e-3 ,eps = 1e-5 )
417
418
418
419
@@ -447,7 +448,7 @@ def accuracy(output, target, topk=(1,)):
447
448
448
449
grad_clip = 1.0
449
450
450
- for e in range (epoch - resume_epoch ) :
451
+ for e in range (epoch ) :
451
452
print (f'Training Epoch : { e } ' )
452
453
total_loss = 0
453
454
val_iter = iter (val_loader )
@@ -456,7 +457,7 @@ def accuracy(output, target, topk=(1,)):
456
457
457
458
total_acc = [0 ,0 ]
458
459
count = 0
459
- for i , data in tqdm ( enumerate (train_loader ) ) :
460
+ for i , data in enumerate (train_loader ) :
460
461
461
462
462
463
model .train ()
@@ -501,7 +502,7 @@ def accuracy(output, target, topk=(1,)):
501
502
val_loss = 0
502
503
torch .cuda .empty_cache ()
503
504
504
- for j in tqdm ( range (update_count ) ) :
505
+ for j in range (update_count ) :
505
506
loss = None
506
507
print (f'Evaluation Steps Start' )
507
508
try :
0 commit comments