Skip to content

Commit b2203b3

Browse files
authored
Merge branch 'main' into add-sphinx-redirect
2 parents c9ea83a + aef2510 commit b2203b3

10 files changed

+3
-1548
lines changed

.jenkins/validate_tutorials_built.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,6 @@
4848
"recipes_source/recipes/timer_quick_start",
4949
"recipes_source/recipes/amp_recipe",
5050
"recipes_source/recipes/Captum_Recipe",
51-
"intermediate_source/flask_rest_api_tutorial",
5251
"intermediate_source/text_to_speech_with_torchaudio",
5352
"intermediate_source/tensorboard_profiler_tutorial", # reenable after 2.0 release.
5453
"advanced_source/semi_structured_sparse", # reenable after 3303 is fixed.

.lycheeignore

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,5 @@ https://pytorch.org/tutorials/beginner/colab/n
1313
# Ignore local host link from intermediate_source/tensorboard_tutorial.rst
1414
http://localhost:6006
1515

16-
# Ignore local host link from recipes_source/deployment_with_flask.rst
17-
http://localhost:5000/predict
18-
1916
# Ignore local host link from advanced_source/cpp_frontend.rst
2017
https://www.uber.com/blog/deep-neuroevolution/

beginner_source/deploy_seq2seq_hybrid_frontend_tutorial.py

Lines changed: 0 additions & 877 deletions
This file was deleted.

beginner_source/hyperparameter_tuning_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ def forward(self, x):
184184
# inputs, labels = inputs.to(device), labels.to(device)
185185
#
186186
# The code now supports training on CPUs, on a single GPU, and on multiple GPUs. Notably, Ray
187-
# also supports `fractional GPUs <https://docs.ray.io/en/master/using-ray-with-gpus.html#fractional-gpus>`_
187+
# also supports `fractional GPUs <https://docs.ray.io/en/latest/ray-core/scheduling/accelerators.html#fractional-accelerators>`_
188188
# so we can share GPUs among trials, as long as the model still fits on the GPU memory. We'll come back
189189
# to that later.
190190
#

index.rst

Lines changed: 0 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -322,14 +322,6 @@ Welcome to PyTorch Tutorials
322322

323323
.. Deploying PyTorch Models in Production
324324
325-
326-
.. customcarditem::
327-
:header: Deploying PyTorch in Python via a REST API with Flask
328-
:card_description: Deploy a PyTorch model using Flask and expose a REST API for model inference using the example of a pretrained DenseNet 121 model which detects the image.
329-
:image: _static/img/thumbnails/cropped/Deploying-PyTorch-in-Python-via-a-REST-API-with-Flask.png
330-
:link: intermediate/flask_rest_api_tutorial.html
331-
:tags: Production
332-
333325
.. customcarditem::
334326
:header: Introduction to TorchScript
335327
:card_description: Introduction to TorchScript, an intermediate representation of a PyTorch model (subclass of nn.Module) that can then be run in a high-performance environment such as C++.
@@ -620,20 +612,6 @@ Welcome to PyTorch Tutorials
620612
:link: advanced/static_quantization_tutorial.html
621613
:tags: Quantization
622614

623-
.. customcarditem::
624-
:header: Grokking PyTorch Intel CPU Performance from First Principles
625-
:card_description: A case study on the TorchServe inference framework optimized with Intel® Extension for PyTorch.
626-
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
627-
:link: intermediate/torchserve_with_ipex
628-
:tags: Model-Optimization,Production
629-
630-
.. customcarditem::
631-
:header: Grokking PyTorch Intel CPU Performance from First Principles (Part 2)
632-
:card_description: A case study on the TorchServe inference framework optimized with Intel® Extension for PyTorch (Part 2).
633-
:image: _static/img/thumbnails/cropped/generic-pytorch-logo.png
634-
:link: intermediate/torchserve_with_ipex_2
635-
:tags: Model-Optimization,Production
636-
637615
.. customcarditem::
638616
:header: Multi-Objective Neural Architecture Search with Ax
639617
:card_description: Learn how to use Ax to search over architectures find optimal tradeoffs between accuracy and latency.
@@ -1005,7 +983,6 @@ Additional Resources
1005983
:caption: Deploying PyTorch Models in Production
1006984

1007985
beginner/onnx/intro_onnx
1008-
intermediate/flask_rest_api_tutorial
1009986
beginner/Intro_to_TorchScript_tutorial
1010987
advanced/cpp_export
1011988
advanced/super_resolution_with_onnxruntime
@@ -1080,8 +1057,6 @@ Additional Resources
10801057
intermediate/dynamic_quantization_bert_tutorial
10811058
intermediate/quantized_transfer_learning_tutorial
10821059
advanced/static_quantization_tutorial
1083-
intermediate/torchserve_with_ipex
1084-
intermediate/torchserve_with_ipex_2
10851060
intermediate/nvfuser_intro_tutorial
10861061
intermediate/ax_multiobjective_nas_tutorial
10871062
intermediate/torch_compile_tutorial

intermediate_source/README.txt

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -29,10 +29,6 @@ Intermediate tutorials
2929
Spatial Transformer Networks Tutorial
3030
https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html
3131

32-
8. flask_rest_api_tutorial.py
33-
Deploying PyTorch and Building a REST API using Flask
34-
https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html
35-
36-
9. nvfuser_intro_tutorial.py
32+
8. nvfuser_intro_tutorial.py
3733
Introduction to nvFuser
3834
https://pytorch.org/tutorials/intermediate/nvfuser_intro_tutorial.html

0 commit comments

Comments
 (0)