Skip to content

Commit be72b01

Browse files
authored
Fix indentation
1 parent e6c7a9b commit be72b01

File tree

1 file changed

+95
-95
lines changed

1 file changed

+95
-95
lines changed

beginner_source/Pretraining_Vgg_from_scratch.py

Lines changed: 95 additions & 95 deletions
Original file line numberDiff line numberDiff line change
@@ -449,103 +449,103 @@ def accuracy(output, target, topk=(1,)):
449449
train_loader = torch.utils.data.DataLoader(train_data,batch_size= batch_size,shuffle = True , num_workers=4,pin_memory = True,prefetch_factor = 2,drop_last = True)
450450
val_loader = torch.utils.data.DataLoader(val_data,batch_size= batch_size,shuffle = True , num_workers=4,pin_memory = True,prefetch_factor = 2,drop_last = True)
451451

452-
model = model.to(device)
453-
454-
grad_clip = 1.0 # setting gradient clipping to 1.0
455-
456-
for e in range(epoch) :
457-
print(f'Training Epoch : {e}')
458-
total_loss = 0
459-
val_iter = iter(val_loader)
460-
train_acc=[0,0]
461-
train_num = 0
462-
463-
total_acc = [0,0]
464-
count= 0
465-
for i , data in enumerate(train_loader) :
466-
467-
468-
model.train()
469-
img,label= data
470-
img,label =img.to(device, non_blocking=True) ,label.to(device, non_blocking=True)
471-
472-
output = model(img)
473-
474-
loss = criterion(output,label) /accum_step
475-
476-
temp_output ,temp_label = output.detach().to('cpu') , label.detach().to('cpu')
477-
temp_acc = accuracy(temp_output,temp_label,(1,5))
478-
train_acc=[train_acc[0]+temp_acc[0] , train_acc[1]+temp_acc[1]]
479-
train_num+=batch_size
480-
temp_output,temp_label,temp_acc = None,None,None
481-
482-
loss.backward()
483-
total_loss += loss.detach().to('cpu')
484-
img,label=None,None
485-
torch.cuda.empty_cache()
486-
if i> 0 and i%update_count == 0 :
487-
print(f'Training steps : {i} parameter update loss :{total_loss} ')
488-
if grad_clip is not None:
489-
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
490-
optimizer.step()
491-
optimizer.zero_grad(set_to_none=True)
492-
493-
if total_loss < 7.0 :
494-
# print(f"train loss {total_loss}less than 7.0 ,set grad clip to {clip}")
495-
grad_clip = clip
496-
if i % eval_step != 0 :
497-
total_loss = 0
498-
499-
output,loss = None,None
452+
model = model.to(device)
453+
454+
grad_clip = 1.0 # setting gradient clipping to 1.0
455+
456+
for e in range(epoch) :
457+
print(f'Training Epoch : {e}')
458+
total_loss = 0
459+
val_iter = iter(val_loader)
460+
train_acc=[0,0]
461+
train_num = 0
462+
463+
total_acc = [0,0]
464+
count= 0
465+
for i , data in enumerate(train_loader) :
466+
467+
468+
model.train()
469+
img,label= data
470+
img,label =img.to(device, non_blocking=True) ,label.to(device, non_blocking=True)
471+
472+
output = model(img)
473+
474+
loss = criterion(output,label) /accum_step
475+
476+
temp_output ,temp_label = output.detach().to('cpu') , label.detach().to('cpu')
477+
temp_acc = accuracy(temp_output,temp_label,(1,5))
478+
train_acc=[train_acc[0]+temp_acc[0] , train_acc[1]+temp_acc[1]]
479+
train_num+=batch_size
480+
temp_output,temp_label,temp_acc = None,None,None
481+
482+
loss.backward()
483+
total_loss += loss.detach().to('cpu')
484+
img,label=None,None
500485
torch.cuda.empty_cache()
501-
if i>0 and i % eval_step == 0 :
502-
503-
print(f'train losss :{total_loss}')
504-
temp_loss = total_loss
505-
total_loss= 0
506-
507-
val_loss = 0
508-
torch.cuda.empty_cache()
509-
510-
for j in range(update_count) :
511-
loss = None
512-
print(f'Evaluation Steps Start')
513-
try :
514-
img,label = next(val_iter)
515-
except StopIteration :
516-
val_iter= iter(val_loader)
517-
img,label = next(val_iter)
518-
with torch.no_grad():
519-
model.eval()
520-
521-
img , label = img.to(device, non_blocking=True) , label.to(device, non_blocking=True)
522-
output = model(img)
523-
temp_output ,temp_label = output.detach().to('cpu') , label.detach().to('cpu')
524-
temp_acc = accuracy(temp_output,temp_label,(1,5))
525-
total_acc=[total_acc[0]+temp_acc[0] , total_acc[1]+temp_acc[1]]
526-
count+=batch_size
527-
528-
loss = criterion(output,label)/accum_step
529-
val_loss += loss.detach().to('cpu')
530-
# loss.backward()
531-
torch.cuda.empty_cache()
532-
533-
534-
img,label,output ,loss= None,None,None,None
535-
536-
537-
486+
if i> 0 and i%update_count == 0 :
487+
print(f'Training steps : {i} parameter update loss :{total_loss} ')
488+
if grad_clip is not None:
489+
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
490+
optimizer.step()
491+
optimizer.zero_grad(set_to_none=True)
492+
493+
if total_loss < 7.0 :
494+
# print(f"train loss {total_loss}less than 7.0 ,set grad clip to {clip}")
495+
grad_clip = clip
496+
if i % eval_step != 0 :
497+
total_loss = 0
498+
499+
output,loss = None,None
538500
torch.cuda.empty_cache()
539-
540-
if abs(val_loss-temp_loss) > 0.03 :
541-
grad_clip=clip
542-
# print(f"val_loss {val_loss} - train_loss {temp_loss} = {abs(val_loss-temp_loss)} > 0.3")
543-
# print(f"set grad clip to {grad_clip}")
544-
545-
best_val_loss = val_loss
546-
547-
val_loss = None
548-
img,label,output = None,None,None
501+
if i>0 and i % eval_step == 0 :
502+
503+
print(f'train losss :{total_loss}')
504+
temp_loss = total_loss
505+
total_loss= 0
506+
507+
val_loss = 0
508+
torch.cuda.empty_cache()
509+
510+
for j in range(update_count) :
511+
loss = None
512+
print(f'Evaluation Steps Start')
513+
try :
514+
img,label = next(val_iter)
515+
except StopIteration :
516+
val_iter= iter(val_loader)
517+
img,label = next(val_iter)
518+
with torch.no_grad():
519+
model.eval()
520+
521+
img , label = img.to(device, non_blocking=True) , label.to(device, non_blocking=True)
522+
output = model(img)
523+
temp_output ,temp_label = output.detach().to('cpu') , label.detach().to('cpu')
524+
temp_acc = accuracy(temp_output,temp_label,(1,5))
525+
total_acc=[total_acc[0]+temp_acc[0] , total_acc[1]+temp_acc[1]]
526+
count+=batch_size
527+
528+
loss = criterion(output,label)/accum_step
529+
val_loss += loss.detach().to('cpu')
530+
# loss.backward()
531+
torch.cuda.empty_cache()
532+
533+
534+
img,label,output ,loss= None,None,None,None
535+
536+
537+
538+
torch.cuda.empty_cache()
539+
540+
if abs(val_loss-temp_loss) > 0.03 :
541+
grad_clip=clip
542+
# print(f"val_loss {val_loss} - train_loss {temp_loss} = {abs(val_loss-temp_loss)} > 0.3")
543+
# print(f"set grad clip to {grad_clip}")
544+
545+
best_val_loss = val_loss
546+
547+
val_loss = None
548+
img,label,output = None,None,None
549549

550550

551551

0 commit comments

Comments
 (0)