Skip to content

Commit f2538e9

Browse files
authored
Merge branch 'main' into 2.6-RC-TEST
2 parents b08b70d + 2a30921 commit f2538e9

16 files changed

+556
-23
lines changed

.lycheeignore

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,3 +12,9 @@ https://pytorch.org/tutorials/beginner/colab/n
1212

1313
# Ignore local host link from intermediate_source/tensorboard_tutorial.rst
1414
http://localhost:6006
15+
16+
# Ignore local host link from recipes_source/deployment_with_flask.rst
17+
http://localhost:5000/predict
18+
19+
# Ignore local host link from advanced_source/cpp_frontend.rst
20+
https://www.uber.com/blog/deep-neuroevolution/

CONTRIBUTING.md

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -218,9 +218,8 @@ described in the preceding sections:
218218
- [NLP From Scratch: Generating Names with a Character-Level RNN
219219
Tutorial](https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html)
220220

221-
If you are creating a recipe, we recommend that you use [this
222-
template](https://github.com/pytorch/tutorials/blob/tutorials_refresh/recipes_source/recipes/example_recipe.py)
223-
as a guide.
221+
If you are creating a recipe, [this is a good
222+
example.](https://github.com/pytorch/tutorials/blob/main/recipes_source/recipes/what_is_state_dict.py)
224223

225224

226225
# Submission Process #

advanced_source/cpp_autograd.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -255,9 +255,9 @@ Out:
255255
[ CPUFloatType{3,4} ]
256256
257257
Please see the documentation for ``torch::autograd::backward``
258-
(`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1afa9b5d4329085df4b6b3d4b4be48914b.html>`_)
258+
(`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1a1403bf65b1f4f8c8506a9e6e5312d030.html>`_)
259259
and ``torch::autograd::grad``
260-
(`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1a1e03c42b14b40c306f9eb947ef842d9c.html>`_)
260+
(`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1ab9fa15dc09a8891c26525fb61d33401a.html>`_)
261261
for more information on how to use them.
262262

263263
Using custom autograd function in C++
@@ -394,9 +394,9 @@ C++ using the following table:
394394
+--------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
395395
| Python | C++ |
396396
+================================+========================================================================================================================================================================+
397-
| ``torch.autograd.backward`` | ``torch::autograd::backward`` (`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1afa9b5d4329085df4b6b3d4b4be48914b.html>`_) |
397+
| ``torch.autograd.backward`` | ``torch::autograd::backward`` (`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1a1403bf65b1f4f8c8506a9e6e5312d030.html>`_) |
398398
+--------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
399-
| ``torch.autograd.grad`` | ``torch::autograd::grad`` (`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1a1e03c42b14b40c306f9eb947ef842d9c.html>`_) |
399+
| ``torch.autograd.grad`` | ``torch::autograd::grad`` (`link <https://pytorch.org/cppdocs/api/function_namespacetorch_1_1autograd_1ab9fa15dc09a8891c26525fb61d33401a.html>`_) |
400400
+--------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
401401
| ``torch.Tensor.detach`` | ``torch::Tensor::detach`` (`link <https://pytorch.org/cppdocs/api/classat_1_1_tensor.html#_CPPv4NK2at6Tensor6detachEv>`_) |
402402
+--------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

advanced_source/cpp_frontend.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ the right tool for the job. Examples for such environments include:
5757
Multiprocessing is an alternative, but not as scalable and has significant
5858
shortcomings. C++ has no such constraints and threads are easy to use and
5959
create. Models requiring heavy parallelization, like those used in `Deep
60-
Neuroevolution <https://eng.uber.com/deep-neuroevolution/>`_, can benefit from
60+
Neuroevolution <https://www.uber.com/blog/deep-neuroevolution/>`_, can benefit from
6161
this.
6262
- **Existing C++ Codebases**: You may be the owner of an existing C++
6363
application doing anything from serving web pages in a backend server to
@@ -662,7 +662,7 @@ Defining the DCGAN Modules
662662
We now have the necessary background and introduction to define the modules for
663663
the machine learning task we want to solve in this post. To recap: our task is
664664
to generate images of digits from the `MNIST dataset
665-
<http://yann.lecun.com/exdb/mnist/>`_. We want to use a `generative adversarial
665+
<https://huggingface.co/datasets/ylecun/mnist>`_. We want to use a `generative adversarial
666666
network (GAN)
667667
<https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf>`_ to solve
668668
this task. In particular, we'll use a `DCGAN architecture

beginner_source/pytorch_with_examples.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ which will be optimized during learning.
149149

150150
In TensorFlow, packages like
151151
`Keras <https://github.com/fchollet/keras>`__,
152-
`TensorFlow-Slim <https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim>`__,
152+
`TensorFlow-Slim <https://github.com/google-research/tf-slim>`__,
153153
and `TFLearn <http://tflearn.org/>`__ provide higher-level abstractions
154154
over raw computational graphs that are useful for building neural
155155
networks.

en-wordlist.txt

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -81,6 +81,8 @@ FX
8181
FX's
8282
FairSeq
8383
Fastpath
84+
FakeTensor
85+
FakeTensors
8486
FFN
8587
FloydHub
8688
FloydHub's
@@ -368,6 +370,8 @@ downsample
368370
downsamples
369371
dropdown
370372
dtensor
373+
dtype
374+
dtypes
371375
duration
372376
elementwise
373377
embeddings
@@ -615,6 +619,7 @@ triton
615619
uint
616620
UX
617621
umap
622+
unbacked
618623
uncomment
619624
uncommented
620625
underflowing
@@ -651,7 +656,6 @@ RecSys
651656
TorchRec
652657
sharding
653658
TBE
654-
dtype
655659
EBC
656660
sharder
657661
hyperoptimized

intermediate_source/FSDP_tutorial.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ It also comes with considerable engineering complexity to handle the training of
1111
`PyTorch FSDP <https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/>`__, released in PyTorch 1.11 makes this easier.
1212

1313
In this tutorial, we show how to use `FSDP APIs <https://pytorch.org/docs/stable/fsdp.html>`__, for simple MNIST models that can be extended to other larger models such as `HuggingFace BERT models <https://huggingface.co/blog/zero-deepspeed-fairscale>`__,
14-
`GPT 3 models up to 1T parameters <https://pytorch.medium.com/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff>`__ . The sample DDP MNIST code has been borrowed from `here <https://github.com/yqhu/mnist_examples>`__.
14+
`GPT 3 models up to 1T parameters <https://pytorch.medium.com/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff>`__ . The sample DDP MNIST code courtesy of `Patrick Hu <https://github.com/yqhu/>`_.
1515

1616

1717
How FSDP works

intermediate_source/ddp_series_minGPT.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ training <ddp_series_multinode.html>`__ \|\| **minGPT Training**
66
Training “real-world” models with DDP
77
=====================================
88

9-
Authors: `Suraj Subramanian <https://github.com/suraj813>`__
9+
Authors: `Suraj Subramanian <https://github.com/subramen>`__
1010

1111
.. grid:: 2
1212

intermediate_source/ddp_series_multinode.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ training** \|\| `minGPT Training <ddp_series_minGPT.html>`__
66
Multinode Training
77
==================
88

9-
Authors: `Suraj Subramanian <https://github.com/suraj813>`__
9+
Authors: `Suraj Subramanian <https://github.com/subramen>`__
1010

1111
.. grid:: 2
1212

intermediate_source/dynamic_quantization_bert_tutorial.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ the following helper functions: one for converting the text examples
138138
into the feature vectors; The other one for measuring the F1 score of
139139
the predicted result.
140140

141-
The `glue_convert_examples_to_features <https://github.com/huggingface/transformers/blob/master/transformers/data/processors/glue.py>`_ function converts the texts into input features:
141+
The `glue_convert_examples_to_features <https://github.com/huggingface/transformers/blob/main/src/transformers/data/datasets/glue.py>`_ function converts the texts into input features:
142142

143143
- Tokenize the input sequences;
144144
- Insert [CLS] in the beginning;
@@ -147,7 +147,7 @@ The `glue_convert_examples_to_features <https://github.com/huggingface/transform
147147
- Generate token type ids to indicate whether a token belongs to the
148148
first sequence or the second sequence.
149149

150-
The `glue_compute_metrics <https://github.com/huggingface/transformers/blob/master/transformers/data/processors/glue.py>`_ function has the compute metrics with
150+
The `glue_compute_metrics <https://github.com/huggingface/transformers/blob/main/src/transformers/data/metrics/__init__.py#L60>`_ function has the compute metrics with
151151
the `F1 score <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html>`_, which
152152
can be interpreted as a weighted average of the precision and recall,
153153
where an F1 score reaches its best value at 1 and worst score at 0. The
@@ -273,7 +273,7 @@ We load the tokenizer and fine-tuned BERT sequence classifier model
273273
2.3 Define the tokenize and evaluation function
274274
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
275275

276-
We reuse the tokenize and evaluation function from `HuggingFace <https://github.com/huggingface/transformers/blob/master/examples/run_glue.py>`_.
276+
We reuse the tokenize and evaluation function from `HuggingFace <https://github.com/huggingface/transformers/blob/main/examples/legacy/pytorch-lightning/run_glue.py>`_.
277277

278278
.. code:: python
279279

0 commit comments

Comments
 (0)