Skip to content

Commit f2e2a6d

Browse files
mikaylagawareckisvekarsalbanD
authored
Add tutorial for swap_tensors in nn.Module (#2824)
* Add tutorial for swap_tensors in nn.Module * Add ref in load_state_dict_tips to address outdated constraint --------- Co-authored-by: Svetlana Karslioglu <[email protected]> Co-authored-by: albanD <[email protected]>
1 parent 2c231da commit f2e2a6d

File tree

3 files changed

+255
-1
lines changed

3 files changed

+255
-1
lines changed

recipes_source/recipes/module_load_state_dict_tips.py

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22
33
Tips for Loading an ``nn.Module`` from a Checkpoint
44
===================================================
5+
**Author:** `Mikayla Gawarecki <https://github.com/mikaylagawarecki>`_
56
67
If you're loading a checkpoint and want to reduce compute and memory as much as possible,
78
this tutorial shares some recommended practices. In particular, we will discuss
@@ -152,8 +153,13 @@ def my_processing_function(key, device):
152153
# ``nn.Module.parameters()``, the optimizer must be initialized after the module
153154
# is loaded from state dict if ``assign=True`` is passed.
154155

156+
# As of PyTorch 2.3.0, one can use ``torch.__future__.set_swap_module_params_on_conversion`` to
157+
# avoid this caveat. This `recipe <https://pytorch.org/tutorials/recipes/recipes/swap_tensors.html>`_
158+
# provides more details.
159+
155160
new_m.load_state_dict(state_dict, assign=True)
156-
# This MUST be done AFTER the load_state_dict with assign.
161+
# Before 2.3.0, this MUST be done AFTER the load_state_dict with assign.
162+
# In versions >= 2.3.0, one can consider setting ``torch.__future__.set_swap_module_params_on_conversion``
157163
opt = torch.optim.SGD(new_m.parameters(), lr=1e-3)
158164

159165
###############################################################################
Lines changed: 241 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,241 @@
1+
"""
2+
Extension points in ``nn.Module`` for ``load_state_dict`` and tensor subclasses
3+
===============================================================================
4+
**Author:** `Mikayla Gawarecki <https://github.com/mikaylagawarecki>`_
5+
6+
This recipe introduces a new utility function ``torch.utils.swap_tensors``
7+
as well as two new extension points where it has been integrated in
8+
``nn.Module``:
9+
10+
* ``nn.Module.to()`` and related methods
11+
* ``nn.Module.load_state_dict()``
12+
13+
.. note::
14+
This recipe requires PyTorch 2.3.0 or later.
15+
"""
16+
17+
###############################################################################
18+
# ``torch.utils.swap_tensors``
19+
# ----------------------------
20+
# ``torch.utils.swap_tensors`` (hereafter referred to as ``swap_tensors``) is a
21+
# utility function that takes in two Python tensors and swaps them.
22+
23+
import torch
24+
import torch.nn as nn
25+
t1 = torch.arange(2)
26+
t2 = torch.arange(3)
27+
print(f"Before swapping, t1: {t1}, t2: {t2}")
28+
torch.utils.swap_tensors(t1, t2)
29+
print(f"After swapping, t1: {t1}, t2: {t2}")
30+
31+
################################################################################
32+
# More specifically, ``swap_tensors`` swaps the Python ``__class__``, ``__dict__``
33+
# and ``__slots__`` of the two tensors, as well as their associated ``at::Tensor``.
34+
#
35+
#
36+
# Application to ``nn.Module``
37+
# ----------------------------
38+
# This utility is pertinent to ``nn.Module`` when a Python object outside
39+
# of the module holds a reference to parameters of the module. If an ``nn.Module``
40+
# modifies any of its parameters out of place, the object holding references to
41+
# the parameters will not see the change. A classic example of this is the
42+
# optimizer, which holds a reference to the parameters of the ``nn.Module``.
43+
# This leads to a silent correctness issue where the ``optimizer.step()`` will
44+
# run without error but the weights of the ``nn.Module`` will not be updated.
45+
46+
mod = torch.nn.Linear(1, 2, bias=False)
47+
optimizer = torch.optim.SGD(mod.parameters())
48+
print(f"weight in mod: {mod.weight}")
49+
print(f"weight in optimizer: {optimizer.param_groups[0]['params']}")
50+
mod.weight = torch.nn.Parameter(2 * mod.weight)
51+
print(f"weight in mod: {mod.weight}")
52+
print(f"weight in optimizer: {optimizer.param_groups[0]['params']}")
53+
54+
################################################################################
55+
# ``nn.Module.to()`` and related methods
56+
# --------------------------------------
57+
# This includes methods that change the device of the module (such as ``nn.Module.cpu()``),
58+
# methods that change the ``dtype`` of the module (such as ``nn.Module.float()``)
59+
# as well as methods that allow the module to be materialized
60+
# (such as ``nn.Module.to_empty()``).
61+
#
62+
# At first glance, it might be non-intuitive that these methods are able to
63+
# modify the parameters of the module in-place. The existing approach has been
64+
# to use a nasty hack dating back from the first days of PyTorch.
65+
#
66+
# Notably, the existing approach does not work in these cases:
67+
#
68+
# * when using ``__torch_dispatch__`` subclasses
69+
# * when ``param`` and ``new_param`` do not have the same Python ``type()``
70+
# * For tensors with special C++ representations (such as sparse tensors and ``XLA`` tensors)
71+
#
72+
# In the following part of this recipe, we will define a toy ``__torch_dispatch__``
73+
# subclass ``MyQuantizedLinearWeight`` that represents quantized linear weights.
74+
# This subclass will be used for illustration purposes throughout the rest of
75+
# the tutorial. For brevity, we omit most of the ``__torch_dispatch__``
76+
# implementation.
77+
aten = torch.ops.aten
78+
79+
class MyQuantizedLinearWeight(torch.Tensor):
80+
@staticmethod
81+
def __new__(cls, elem, scale):
82+
return torch.Tensor._make_wrapper_subclass(
83+
cls,
84+
elem.shape,
85+
dtype=elem.dtype,
86+
layout=elem.layout,
87+
device=elem.device,
88+
strides=elem.stride(),
89+
storage_offset=elem.storage_offset())
90+
91+
def __init__(self, elem: torch.Tensor, scale: float):
92+
self.elem = elem
93+
self.scale = scale
94+
95+
def __repr__(self):
96+
return f"MyQuantizedLinearWeight({self.elem}, scale={self.scale})"
97+
98+
@classmethod
99+
def __torch_dispatch__(cls, func, types, args, kwargs):
100+
if func in (aten.detach.default, aten._to_copy.default):
101+
new_elem = func(args[0].elem, *args[1:], **kwargs)
102+
return cls(new_elem, args[0].scale)
103+
# Implementations for certain ops would be added to ``OP_TABLE``.
104+
# We omit this for brevity.
105+
OP_TABLE = dict()
106+
if func in OP_TABLE:
107+
return OP_TABLE[func](func, args, kwargs)
108+
raise NotImplementedError(f"Unsupported function {func}")
109+
110+
#################################################################################
111+
# Let us create an ``nn.Linear`` layer of ``dtype`` ``torch.float32`` where the weight is
112+
# a ``MyQuantizedLinearWeight`` and try to convert it to ``torch.bfloat16``.
113+
# Observe that the weight's ``dtype`` changes as expected. However, the ``dtype``
114+
# of the subclass' payload (``elem``) does not change.
115+
116+
m = nn.Linear(3, 5, dtype=torch.float32)
117+
m.weight = torch.nn.Parameter(MyQuantizedLinearWeight(m.weight, 0.5))
118+
print(f"Before: id(m.weight)={id(m.weight)}, id(m.bias)={id(m.bias)}")
119+
m.bfloat16()
120+
print(f"After: id(m.weight)={id(m.weight)}, id(m.bias)={id(m.bias)}")
121+
print(f"m.weight.dtype: {m.weight.dtype}")
122+
print(f"m.weight.elem.dtype: {m.weight.elem.dtype}")
123+
print(f"m.bias.dtype: {m.bias.dtype}")
124+
125+
################################################################################
126+
# To this end, we introduce a global config
127+
# ``torch.__future__.set_swap_module_params_on_conversion`` that will use
128+
# ``swap_tensors`` to swap the parameters of the module while preserving
129+
# references in place of ``.data`` setting. When this config is set,
130+
# ``swap_tensors`` will be used during the conversion, which ensures that
131+
# the ``dtype`` of the payload is properly converted.
132+
133+
torch.__future__.set_swap_module_params_on_conversion(True)
134+
m = nn.Linear(3, 5, dtype=torch.float32)
135+
m.weight = torch.nn.Parameter(MyQuantizedLinearWeight(m.weight, 0.5))
136+
print(f"Before: id(m.weight)={id(m.weight)}, id(m.bias)={id(m.bias)}")
137+
m.bfloat16()
138+
print(f"After: id(m.weight)={id(m.weight)}, id(m.bias)={id(m.bias)}")
139+
print(f"m.weight.dtype: {m.weight.dtype}")
140+
print(f"m.weight.elem.dtype: {m.weight.elem.dtype}")
141+
print(f"m.bias.dtype: {m.bias.dtype}")
142+
torch.__future__.set_swap_module_params_on_conversion(False)
143+
144+
################################################################################
145+
# ``nn.Module.load_state_dict()``
146+
# --------------------------------
147+
# Depending on the value of the ``assign`` keyword argument passed
148+
# to ``load_state_dict()``, there are two ways to load the ``state_dict``:
149+
#
150+
# * ``assign=False``: preserves the properties of ``module.param`` and only takes the values
151+
# from ``state_dict['param_name']``
152+
# * ``assign=True``: preserves the properties and values of ``state_dict['param_name']``.
153+
#
154+
#
155+
# Previously, these were implemented with in-place ``copy_`` and ``__setattr__`` respectively.
156+
# With the existing implementation, each approach had its own limitations -- ``assign=False``
157+
# imposes the constraint that the type of the parameter in the ``state_dict`` must
158+
# be the same as the type of the parameter in the module while ``assign=True`` imposes
159+
# the constraint that anything that holds references to the module's parameters must
160+
# be initialized after ``nn.Module.load_state_dict()``.
161+
#
162+
# Now, we address both constraints by adding a ``swap_tensors`` path to ``load_state_dict()``
163+
# and introducing a new extension point ``torch.Tensor.module_load(self, other, assign=False)``.
164+
# When the ``swap_tensors`` path is enabled via the ``__future__`` mentioned above,
165+
# we can use a ``__torch_function__`` handler for ``module_load`` to apply a
166+
# custom transformation to the value in the ``state_dict``. The result of this
167+
# transformation will be swapped with the parameter in the module.
168+
#
169+
# In the following example, we will use the ``MyQuantizedLinearWeight`` subclass
170+
# defined above to illustrate how we can use these features to apply a
171+
# custom quantization scheme to the weights of a linear layer when
172+
# loading the ``state_dict``.
173+
#
174+
# Recall that the ``__torch_function__`` handler for ``module_load`` will be
175+
# invoked if either ``self`` or ``other`` (in this case ``param`` or
176+
# ``state_dict[param_key]``) are ``MyQuantizedLinearWeight`` subclasses.
177+
#
178+
# Assume that we expect the ``state_dict`` to contain plain tensors and the
179+
# module to contain ``MyQuantizedLinearWeight`` parameters where we want the
180+
# tensors in the ``state_dict`` to be transformed into the subclass. Then we
181+
# can define a ``__torch_function__`` handler for ``torch.Tensor.module_load``
182+
# as such:
183+
184+
@classmethod
185+
def custom_torch_function(cls, func, types, args=(), kwargs=None):
186+
kwargs = {} if kwargs is None else kwargs
187+
188+
if func is torch.Tensor.module_load:
189+
dest, src = args[0], args[1]
190+
assert type(dest) == cls and type(src) == torch.Tensor
191+
return MyQuantizedLinearWeight(src, dest.scale)
192+
else:
193+
with torch._C.DisableTorchFunctionSubclass():
194+
return func(*args, **kwargs)
195+
196+
MyQuantizedLinearWeight.__torch_function__ = custom_torch_function
197+
198+
#################################################################################
199+
# First, let us create a skeleton of a model on the meta device to avoid
200+
# materializing storages. We convert all weights in the modules to
201+
# ``MyQuantizedLinearWeight`` subclasses while leaving biases intact.
202+
203+
def fn(m):
204+
if isinstance(m, nn.Linear):
205+
requires_grad = m.weight.requires_grad
206+
m.weight = torch.nn.Parameter(
207+
MyQuantizedLinearWeight(m.weight, 0.5), requires_grad=requires_grad
208+
)
209+
210+
with torch.device("meta"):
211+
m = nn.Linear(3, 5)
212+
m.apply(fn)
213+
214+
#################################################################################
215+
# We can then load the ``state_dict``. Observe that we use ``assign=True`` because
216+
# for biases, we want to preserve the properties of the tensor in the ``state_dict``
217+
# (for example, we do not want the bias to be on the ``meta`` device after loading).
218+
219+
torch.__future__.set_swap_module_params_on_conversion(True)
220+
print(f"Before: id(weight)={id(m.weight)}, id(bias)={id(m.bias)}")
221+
print(f"m.state_dict() before load_state_dict():\n {m.state_dict()}")
222+
state_dict = nn.Linear(3, 5).state_dict()
223+
print(f"state_dict:\n {state_dict}")
224+
m.load_state_dict(state_dict, assign=True)
225+
print(f"After: id(weight)={id(m.weight)}, id(bias)={id(m.bias)}")
226+
print(f"m.state_dict() after load_state_dict():\n {m.state_dict()}")
227+
228+
#################################################################################
229+
# The above is a toy example of how we can use the new extension point in
230+
# ``nn.Module.load_state_dict()``. One can also imagine alternate scenarios such
231+
# as when we have tensor subclasses in the ``state_dict`` and plain ``nn.Parameters``/
232+
# tensors in the module or when both are tensor subclasses. Based on the use
233+
# case, we can define the ``__torch_function__`` handler for ``module_load``
234+
# to apply the transforms as needed.
235+
#
236+
# Conclusion
237+
# ----------
238+
# In this recipe, we learned about ``swap_tensors``, the importance
239+
# of preserving references for parameters in ``nn.Module`` as well as how to
240+
# use the two new extension points that are gated by
241+
# ``torch.__future__.set_swap_module_params_on_conversion``.

recipes_source/recipes_index.rst

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -151,6 +151,13 @@ Recipes are bite-sized, actionable examples of how to use specific PyTorch featu
151151
:link: ../recipes/torch_logs.html
152152
:tags: Basics
153153

154+
.. customcarditem::
155+
:header: Extension points in nn.Module for loading state_dict and tensor subclasses
156+
:card_description: New extension points in nn.Module.
157+
:image: ../_static/img/thumbnails/cropped/generic-pytorch-logo.png
158+
:link: ../recipes/recipes/swap_tensors.html
159+
:tags: Basics
160+
154161

155162
.. Interpretability
156163

0 commit comments

Comments
 (0)