|
54 | 54 | "In this tutorial, we will cover three scenarios that require extending\n",
|
55 | 55 | "the ONNX registry with custom operators:\n",
|
56 | 56 | "\n",
|
57 |
| - "- Unsupported ATen operators\n", |
58 | 57 | "- Custom operators with existing ONNX Runtime support\n",
|
59 |
| - "- Custom operators without ONNX Runtime support\n", |
60 |
| - "\n", |
61 |
| - "Unsupported ATen operators\n", |
62 |
| - "==========================\n", |
63 |
| - "\n", |
64 |
| - "Although the ONNX exporter team does their best efforts to support all\n", |
65 |
| - "ATen operators, some of them might not be supported yet. In this\n", |
66 |
| - "section, we will demonstrate how you can add unsupported ATen operators\n", |
67 |
| - "to the ONNX Registry.\n", |
68 |
| - "\n", |
69 |
| - "<div style=\"background-color: #54c7ec; color: #fff; font-weight: 700; padding-left: 10px; padding-top: 5px; padding-bottom: 5px\"><strong>NOTE:</strong></div>\n", |
70 |
| - "\n", |
71 |
| - "<div style=\"background-color: #f3f4f7; padding-left: 10px; padding-top: 10px; padding-bottom: 10px; padding-right: 10px\">\n", |
72 |
| - "\n", |
73 |
| - "<p>The steps to implement unsupported ATen operators are the same to replace the implementation of an existingATen operator with a custom implementation.Because we don't actually have an unsupported ATen operator to use in this tutorial, we are going to leveragethis and replace the implementation of <code>aten::add.Tensor</code> with a custom implementation the same way we wouldif the operator was not present in the ONNX Registry.</p>\n", |
74 |
| - "\n", |
75 |
| - "</div>\n", |
76 |
| - "\n", |
77 |
| - "When a model cannot be exported to ONNX due to an unsupported operator,\n", |
78 |
| - "the ONNX exporter will show an error message similar to:\n", |
79 |
| - "\n", |
80 |
| - "``` {.python}\n", |
81 |
| - "RuntimeErrorWithDiagnostic: Unsupported FX nodes: {'call_function': ['aten.add.Tensor']}.\n", |
82 |
| - "```\n", |
83 |
| - "\n", |
84 |
| - "The error message indicates that the fully qualified name of unsupported\n", |
85 |
| - "ATen operator is `aten::add.Tensor`. The fully qualified name of an\n", |
86 |
| - "operator is composed of the namespace, operator name, and overload\n", |
87 |
| - "following the format `namespace::operator_name.overload`.\n", |
88 |
| - "\n", |
89 |
| - "To add support for an unsupported ATen operator or to replace the\n", |
90 |
| - "implementation for an existing one, we need:\n", |
91 |
| - "\n", |
92 |
| - "- The fully qualified name of the ATen operator (e.g.\n", |
93 |
| - " `aten::add.Tensor`). This information is always present in the error\n", |
94 |
| - " message as show above.\n", |
95 |
| - "- The implementation of the operator using [ONNX\n", |
96 |
| - " Script](https://github.com/microsoft/onnxscript). ONNX Script is a\n", |
97 |
| - " prerequisite for this tutorial. Please make sure you have read the\n", |
98 |
| - " [ONNX Script\n", |
99 |
| - " tutorial](https://github.com/microsoft/onnxscript/blob/main/docs/tutorial/index.md)\n", |
100 |
| - " before proceeding.\n", |
101 |
| - "\n", |
102 |
| - "Because `aten::add.Tensor` is already supported by the ONNX Registry, we\n", |
103 |
| - "will demonstrate how to replace it with a custom implementation, but\n", |
104 |
| - "keep in mind that the same steps apply to support new unsupported ATen\n", |
105 |
| - "operators.\n", |
106 |
| - "\n", |
107 |
| - "This is possible because the `OnnxRegistry`{.interpreted-text\n", |
108 |
| - "role=\"class\"} allows users to override an operator registration. We will\n", |
109 |
| - "override the registration of `aten::add.Tensor` with our custom\n", |
110 |
| - "implementation and verify it exists.\n" |
| 58 | + "- Custom operators without ONNX Runtime support\n" |
111 | 59 | ]
|
112 | 60 | },
|
113 | 61 | {
|
|
121 | 69 | "import torch\n",
|
122 | 70 | "import onnxruntime\n",
|
123 | 71 | "import onnxscript\n",
|
124 |
| - "from onnxscript import opset18 # opset 18 is the latest (and only) supported version for now\n", |
125 |
| - "\n", |
126 |
| - "class Model(torch.nn.Module):\n", |
127 |
| - " def forward(self, input_x, input_y):\n", |
128 |
| - " return torch.ops.aten.add(input_x, input_y) # generates a aten::add.Tensor node\n", |
129 |
| - "\n", |
130 |
| - "input_add_x = torch.randn(3, 4)\n", |
131 |
| - "input_add_y = torch.randn(3, 4)\n", |
132 |
| - "aten_add_model = Model()\n", |
133 |
| - "\n", |
134 |
| - "\n", |
135 |
| - "# Now we create a ONNX Script function that implements ``aten::add.Tensor``.\n", |
136 |
| - "# The function name (e.g. ``custom_aten_add``) is displayed in the ONNX graph, so we recommend to use intuitive names.\n", |
137 |
| - "custom_aten = onnxscript.values.Opset(domain=\"custom.aten\", version=1)\n", |
138 |
| - "\n", |
139 |
| - "# NOTE: The function signature must match the signature of the unsupported ATen operator.\n", |
140 |
| - "# https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml\n", |
141 |
| - "# NOTE: All attributes must be annotated with type hints.\n", |
142 |
| - "@onnxscript.script(custom_aten)\n", |
143 |
| - "def custom_aten_add(input_x, input_y, alpha: float = 1.0):\n", |
144 |
| - " input_y = opset18.Mul(input_y, alpha)\n", |
145 |
| - " return opset18.Add(input_x, input_y)\n", |
146 |
| - "\n", |
147 |
| - "\n", |
148 |
| - "# Now we have everything we need to support unsupported ATen operators.\n", |
149 |
| - "# Let's register the ``custom_aten_add`` function to ONNX registry, and export the model to ONNX again.\n", |
150 |
| - "onnx_registry = torch.onnx.OnnxRegistry()\n", |
151 |
| - "onnx_registry.register_op(\n", |
152 |
| - " namespace=\"aten\", op_name=\"add\", overload=\"Tensor\", function=custom_aten_add\n", |
153 |
| - " )\n", |
154 |
| - "print(f\"aten::add.Tensor is supported by ONNX registry: \\\n", |
155 |
| - " {onnx_registry.is_registered_op(namespace='aten', op_name='add', overload='Tensor')}\"\n", |
156 |
| - " )\n", |
157 |
| - "export_options = torch.onnx.ExportOptions(onnx_registry=onnx_registry)\n", |
158 |
| - "onnx_program = torch.onnx.dynamo_export(\n", |
159 |
| - " aten_add_model, input_add_x, input_add_y, export_options=export_options\n", |
160 |
| - " )" |
161 |
| - ] |
162 |
| - }, |
163 |
| - { |
164 |
| - "cell_type": "markdown", |
165 |
| - "metadata": {}, |
166 |
| - "source": [ |
167 |
| - "Now let\\'s inspect the model and verify the model has a\n", |
168 |
| - "`custom_aten_add` instead of `aten::add.Tensor`. The graph has one graph\n", |
169 |
| - "node for `custom_aten_add`, and inside of it there are four function\n", |
170 |
| - "nodes, one for each operator, and one for constant attribute.\n" |
171 |
| - ] |
172 |
| - }, |
173 |
| - { |
174 |
| - "cell_type": "code", |
175 |
| - "execution_count": null, |
176 |
| - "metadata": { |
177 |
| - "collapsed": false |
178 |
| - }, |
179 |
| - "outputs": [], |
180 |
| - "source": [ |
181 |
| - "# graph node domain is the custom domain we registered\n", |
182 |
| - "assert onnx_program.model_proto.graph.node[0].domain == \"custom.aten\"\n", |
183 |
| - "assert len(onnx_program.model_proto.graph.node) == 1\n", |
184 |
| - "# graph node name is the function name\n", |
185 |
| - "assert onnx_program.model_proto.graph.node[0].op_type == \"custom_aten_add\"\n", |
186 |
| - "# function node domain is empty because we use standard ONNX operators\n", |
187 |
| - "assert {node.domain for node in onnx_program.model_proto.functions[0].node} == {\"\"}\n", |
188 |
| - "# function node name is the standard ONNX operator name\n", |
189 |
| - "assert {node.op_type for node in onnx_program.model_proto.functions[0].node} == {\"Add\", \"Mul\", \"Constant\"}" |
190 |
| - ] |
191 |
| - }, |
192 |
| - { |
193 |
| - "cell_type": "markdown", |
194 |
| - "metadata": {}, |
195 |
| - "source": [ |
196 |
| - "This is how `custom_aten_add_model` looks in the ONNX graph using\n", |
197 |
| - "Netron:\n", |
198 |
| - "\n", |
199 |
| - "{.align-center\n", |
200 |
| - "width=\"70.0%\"}\n", |
201 |
| - "\n", |
202 |
| - "Inside the `custom_aten_add` function, we can see the three ONNX nodes\n", |
203 |
| - "we used in the function (`CastLike`, `Add`, and `Mul`), and one\n", |
204 |
| - "`Constant` attribute:\n", |
205 |
| - "\n", |
206 |
| - "{.align-center\n", |
207 |
| - "width=\"70.0%\"}\n", |
208 |
| - "\n", |
209 |
| - "This was all that we needed to register the new ATen operator into the\n", |
210 |
| - "ONNX Registry. As an additional step, we can use ONNX Runtime to run the\n", |
211 |
| - "model, and compare the results with PyTorch.\n" |
212 |
| - ] |
213 |
| - }, |
214 |
| - { |
215 |
| - "cell_type": "code", |
216 |
| - "execution_count": null, |
217 |
| - "metadata": { |
218 |
| - "collapsed": false |
219 |
| - }, |
220 |
| - "outputs": [], |
221 |
| - "source": [ |
222 |
| - "# Use ONNX Runtime to run the model, and compare the results with PyTorch\n", |
223 |
| - "onnx_program.save(\"./custom_add_model.onnx\")\n", |
224 |
| - "ort_session = onnxruntime.InferenceSession(\n", |
225 |
| - " \"./custom_add_model.onnx\", providers=['CPUExecutionProvider']\n", |
226 |
| - " )\n", |
227 |
| - "\n", |
228 |
| - "def to_numpy(tensor):\n", |
229 |
| - " return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()\n", |
230 |
| - "\n", |
231 |
| - "onnx_input = onnx_program.adapt_torch_inputs_to_onnx(input_add_x, input_add_y)\n", |
232 |
| - "onnxruntime_input = {k.name: to_numpy(v) for k, v in zip(ort_session.get_inputs(), onnx_input)}\n", |
233 |
| - "onnxruntime_outputs = ort_session.run(None, onnxruntime_input)\n", |
234 |
| - "\n", |
235 |
| - "torch_outputs = aten_add_model(input_add_x, input_add_y)\n", |
236 |
| - "torch_outputs = onnx_program.adapt_torch_outputs_to_onnx(torch_outputs)\n", |
237 |
| - "\n", |
238 |
| - "assert len(torch_outputs) == len(onnxruntime_outputs)\n", |
239 |
| - "for torch_output, onnxruntime_output in zip(torch_outputs, onnxruntime_outputs):\n", |
240 |
| - " torch.testing.assert_close(torch_output, torch.tensor(onnxruntime_output))" |
| 72 | + "from onnxscript import opset18 # opset 18 is the latest (and only) supported version for now" |
241 | 73 | ]
|
242 | 74 | },
|
243 | 75 | {
|
|
385 | 217 | "def to_numpy(tensor):\n",
|
386 | 218 | " return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()\n",
|
387 | 219 | "\n",
|
388 |
| - "onnx_input = onnx_program.adapt_torch_inputs_to_onnx(input_gelu_x)\n", |
| 220 | + "onnx_input = [input_gelu_x]\n", |
389 | 221 | "onnxruntime_input = {k.name: to_numpy(v) for k, v in zip(ort_session.get_inputs(), onnx_input)}\n",
|
390 |
| - "onnxruntime_outputs = ort_session.run(None, onnxruntime_input)\n", |
| 222 | + "onnxruntime_outputs = ort_session.run(None, onnxruntime_input)[0]\n", |
391 | 223 | "\n",
|
392 | 224 | "torch_outputs = aten_gelu_model(input_gelu_x)\n",
|
393 |
| - "torch_outputs = onnx_program.adapt_torch_outputs_to_onnx(torch_outputs)\n", |
394 | 225 | "\n",
|
395 | 226 | "assert len(torch_outputs) == len(onnxruntime_outputs)\n",
|
396 | 227 | "for torch_output, onnxruntime_output in zip(torch_outputs, onnxruntime_outputs):\n",
|
|
525 | 356 | "outputs": [],
|
526 | 357 | "source": [
|
527 | 358 | "assert onnx_program.model_proto.graph.node[0].domain == \"test.customop\"\n",
|
528 |
| - "assert onnx_program.model_proto.graph.node[0].op_type == \"custom_addandround\"\n", |
529 |
| - "assert onnx_program.model_proto.functions[0].node[0].domain == \"test.customop\"\n", |
530 |
| - "assert onnx_program.model_proto.functions[0].node[0].op_type == \"CustomOpOne\"\n", |
531 |
| - "assert onnx_program.model_proto.functions[0].node[1].domain == \"test.customop\"\n", |
532 |
| - "assert onnx_program.model_proto.functions[0].node[1].op_type == \"CustomOpTwo\"" |
| 359 | + "assert onnx_program.model_proto.graph.node[0].op_type == \"CustomOpOne\"\n", |
| 360 | + "assert onnx_program.model_proto.graph.node[1].domain == \"test.customop\"\n", |
| 361 | + "assert onnx_program.model_proto.graph.node[1].op_type == \"CustomOpTwo\"" |
533 | 362 | ]
|
534 | 363 | },
|
535 | 364 | {
|
536 | 365 | "cell_type": "markdown",
|
537 | 366 | "metadata": {},
|
538 | 367 | "source": [
|
539 |
| - "This is how `custom_addandround_model` ONNX graph looks using Netron:\n", |
540 |
| - "\n", |
541 |
| - "{.align-center\n", |
542 |
| - "width=\"70.0%\"}\n", |
543 |
| - "\n", |
544 |
| - "Inside the `custom_addandround` function, we can see the two custom\n", |
545 |
| - "operators we used in the function (`CustomOpOne`, and `CustomOpTwo`),\n", |
546 |
| - "and they are from module `test.customop`:\n", |
| 368 | + "This is how `custom_addandround_model` ONNX graph looks using Netron. We\n", |
| 369 | + "can see the two custom operators we used in the function (`CustomOpOne`,\n", |
| 370 | + "and `CustomOpTwo`), and they are from module `test.customop`:\n", |
547 | 371 | "\n",
|
548 |
| - "\n", |
| 372 | + "\n", |
549 | 373 | "\n",
|
550 | 374 | "Custom Ops Registration in ONNX Runtime\n",
|
551 | 375 | "=======================================\n",
|
|
0 commit comments