|
| 1 | +""" |
| 2 | +=============================================================== |
| 3 | +Transforms on Rotated Bounding Boxes |
| 4 | +=============================================================== |
| 5 | +
|
| 6 | +Introduction. |
| 7 | +
|
| 8 | +First, some code to set everything up. |
| 9 | +""" |
| 10 | + |
| 11 | +# %% |
| 12 | +from PIL import Image |
| 13 | +from pathlib import Path |
| 14 | +import matplotlib.pyplot as plt |
| 15 | + |
| 16 | + |
| 17 | +import torch |
| 18 | +import torchvision.transforms.functional as F |
| 19 | +from torchvision import tv_tensors |
| 20 | +from torchvision.transforms import v2 |
| 21 | +from torchvision.utils import draw_bounding_boxes |
| 22 | +from helpers import plot |
| 23 | + |
| 24 | +plt.rcParams["figure.figsize"] = [10, 5] |
| 25 | +plt.rcParams["savefig.bbox"] = "tight" |
| 26 | + |
| 27 | +# if you change the seed, make sure that the randomly-applied transforms |
| 28 | +# properly show that the image can be both transformed and *not* transformed! |
| 29 | +torch.manual_seed(0) |
| 30 | + |
| 31 | +# If you're trying to run that on Colab, you can download the assets and the |
| 32 | +# helpers from https://github.com/pytorch/vision/tree/main/gallery/ |
| 33 | +orig_img = Image.open(Path('../assets') / 'leaning_tower.jpg') |
| 34 | + |
| 35 | +# %% |
| 36 | +# Rotated Bounding Boxes |
| 37 | +# ---------------------- |
| 38 | +# Brief intro into what rotated bounding boxes are. Brief description of the |
| 39 | +# image. |
| 40 | + |
| 41 | +orig_box = tv_tensors.BoundingBoxes( |
| 42 | + [ |
| 43 | + [860.0, 1100, 570, 1840, -7], |
| 44 | + ], |
| 45 | + format="CXCYWHR", |
| 46 | + canvas_size=(orig_img.size[1], orig_img.size[0]), |
| 47 | + clamping_mode="hard", |
| 48 | +) |
| 49 | +# TODO: why is this necessary? |
| 50 | +orig_box = v2.ConvertBoundingBoxFormat("xyxyxyxy")(orig_box) |
| 51 | + |
| 52 | +plot([(orig_img, orig_box)]) |
| 53 | + |
| 54 | +# %% |
| 55 | +# Image Rotation |
| 56 | +# --------------- |
| 57 | +# We can rotate the image itself, and the already rotated bounding boxes are |
| 58 | +# rotated appropriately. |
| 59 | + |
| 60 | +out_img, out_box = v2.RandomRotation(degrees=(0, 180), expand=True)(orig_img, orig_box) |
| 61 | +plot([(out_img, out_box)]) |
| 62 | + |
| 63 | +# %% |
| 64 | +# Image Padding |
| 65 | +# ------------- |
| 66 | +# The rotated bounding boxes also respect padding transforms. |
| 67 | +padded_imgs_and_boxes = [ |
| 68 | + v2.Pad(padding=padding)(orig_img, orig_box) for padding in (10, 30, 50, 100) |
| 69 | +] |
| 70 | +plot([(orig_img, orig_box)] + padded_imgs_and_boxes) |
| 71 | + |
| 72 | +# %% |
| 73 | +# Image Resizing |
| 74 | +# -------------- |
| 75 | +# The rotated bounding boxes are resized along with the image. |
| 76 | +resized_imgs_and_boxes = [v2.Resize(size=size)(orig_img, orig_box) for size in (30, 50, 100, orig_img.size)] |
| 77 | +plot([(orig_img, orig_box)] + resized_imgs_and_boxes) |
| 78 | + |
| 79 | +# %% |
| 80 | +# Image Rotation |
| 81 | +# -------------- |
| 82 | +rotater = v2.RandomRotation(degrees=(0, 180)) |
| 83 | +rotated_imgs = [rotater((orig_img, orig_box)) for _ in range(4)] |
| 84 | +plot([(orig_img, orig_box)] + rotated_imgs) |
| 85 | + |
| 86 | +# %% |
| 87 | +# Elastic Transform |
| 88 | +# ----------------- |
| 89 | +plot([v2.ElasticTransform(alpha=250.0)(orig_img, orig_box)]) |
| 90 | + |
| 91 | +# %% |
| 92 | +# Clamping Modes |
| 93 | +# -------------- |
| 94 | +# Explain hard and soft, with appropriate links to documentation. Talk about |
| 95 | +# defaults. Link to to-be-written-tutorial on mode-setting in general. |
| 96 | +soft_box = orig_box.clone() |
| 97 | +soft_box.clamping_mode = "soft" |
| 98 | + |
| 99 | +hard_center_crops_and_boxes = [ |
| 100 | + v2.CenterCrop(size=size)(orig_img, orig_box) |
| 101 | + for size in (800, 1200, 2000, orig_img.size) |
| 102 | +] |
| 103 | + |
| 104 | +soft_center_crops_and_boxes = [ |
| 105 | + v2.CenterCrop(size=size)(orig_img, soft_box) |
| 106 | + for size in (800, 1200, 2000, orig_img.size) |
| 107 | +] |
| 108 | + |
| 109 | +plot([[(orig_img, orig_box)] + hard_center_crops_and_boxes, |
| 110 | + [(orig_img, soft_box)] + soft_center_crops_and_boxes]) |
| 111 | + |
0 commit comments