@@ -929,8 +929,10 @@ def _gen_affine_grid(
929
929
930
930
d = 0.5
931
931
base_grid = torch .empty (1 , oh , ow , 3 , dtype = theta .dtype , device = theta .device )
932
- base_grid [..., 0 ].copy_ (torch .linspace (- ow * 0.5 + d , ow * 0.5 + d - 1 , steps = ow ))
933
- base_grid [..., 1 ].copy_ (torch .linspace (- oh * 0.5 + d , oh * 0.5 + d - 1 , steps = oh ).unsqueeze_ (- 1 ))
932
+ x_grid = torch .linspace (- ow * 0.5 + d , ow * 0.5 + d - 1 , steps = ow , device = theta .device )
933
+ base_grid [..., 0 ].copy_ (x_grid )
934
+ y_grid = torch .linspace (- oh * 0.5 + d , oh * 0.5 + d - 1 , steps = oh , device = theta .device ).unsqueeze_ (- 1 )
935
+ base_grid [..., 1 ].copy_ (y_grid )
934
936
base_grid [..., 2 ].fill_ (1 )
935
937
936
938
rescaled_theta = theta .transpose (1 , 2 ) / torch .tensor ([0.5 * w , 0.5 * h ], dtype = theta .dtype , device = theta .device )
@@ -1065,8 +1067,10 @@ def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype,
1065
1067
1066
1068
d = 0.5
1067
1069
base_grid = torch .empty (1 , oh , ow , 3 , dtype = dtype , device = device )
1068
- base_grid [..., 0 ].copy_ (torch .linspace (d , ow * 1.0 + d - 1.0 , steps = ow ))
1069
- base_grid [..., 1 ].copy_ (torch .linspace (d , oh * 1.0 + d - 1.0 , steps = oh ).unsqueeze_ (- 1 ))
1070
+ x_grid = torch .linspace (d , ow * 1.0 + d - 1.0 , steps = ow , device = device )
1071
+ base_grid [..., 0 ].copy_ (x_grid )
1072
+ y_grid = torch .linspace (d , oh * 1.0 + d - 1.0 , steps = oh , device = device ).unsqueeze_ (- 1 )
1073
+ base_grid [..., 1 ].copy_ (y_grid )
1070
1074
base_grid [..., 2 ].fill_ (1 )
1071
1075
1072
1076
rescaled_theta1 = theta1 .transpose (1 , 2 ) / torch .tensor ([0.5 * ow , 0.5 * oh ], dtype = dtype , device = device )
0 commit comments