|
| 1 | +import contextlib |
| 2 | +import sys |
| 3 | +import os |
| 4 | +import torch |
| 5 | +import unittest |
| 6 | + |
| 7 | +from torchvision import io |
| 8 | +from torchvision.datasets.samplers import RandomClipSampler, UniformClipSampler |
| 9 | +from torchvision.datasets.video_utils import VideoClips, unfold |
| 10 | +from torchvision import get_video_backend |
| 11 | + |
| 12 | +from common_utils import get_tmp_dir |
| 13 | + |
| 14 | + |
| 15 | +@contextlib.contextmanager |
| 16 | +def get_list_of_videos(num_videos=5, sizes=None, fps=None): |
| 17 | + with get_tmp_dir() as tmp_dir: |
| 18 | + names = [] |
| 19 | + for i in range(num_videos): |
| 20 | + if sizes is None: |
| 21 | + size = 5 * (i + 1) |
| 22 | + else: |
| 23 | + size = sizes[i] |
| 24 | + if fps is None: |
| 25 | + f = 5 |
| 26 | + else: |
| 27 | + f = fps[i] |
| 28 | + data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8) |
| 29 | + name = os.path.join(tmp_dir, "{}.mp4".format(i)) |
| 30 | + names.append(name) |
| 31 | + io.write_video(name, data, fps=f) |
| 32 | + |
| 33 | + yield names |
| 34 | + |
| 35 | + |
| 36 | +@unittest.skipIf(not io.video._av_available(), "this test requires av") |
| 37 | +class Tester(unittest.TestCase): |
| 38 | + def test_random_clip_sampler(self): |
| 39 | + with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
| 40 | + video_clips = VideoClips(video_list, 5, 5) |
| 41 | + sampler = RandomClipSampler(video_clips, 3) |
| 42 | + self.assertEqual(len(sampler), 3 * 3) |
| 43 | + indices = torch.tensor(list(iter(sampler))) |
| 44 | + videos = indices // 5 |
| 45 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 46 | + self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2]))) |
| 47 | + self.assertTrue(count.equal(torch.tensor([3, 3, 3]))) |
| 48 | + |
| 49 | + def test_random_clip_sampler_unequal(self): |
| 50 | + with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
| 51 | + video_clips = VideoClips(video_list, 5, 5) |
| 52 | + sampler = RandomClipSampler(video_clips, 3) |
| 53 | + self.assertEqual(len(sampler), 2 + 3 + 3) |
| 54 | + indices = list(iter(sampler)) |
| 55 | + self.assertIn(0, indices) |
| 56 | + self.assertIn(1, indices) |
| 57 | + # remove elements of the first video, to simplify testing |
| 58 | + indices.remove(0) |
| 59 | + indices.remove(1) |
| 60 | + indices = torch.tensor(indices) - 2 |
| 61 | + videos = indices // 5 |
| 62 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 63 | + self.assertTrue(v_idxs.equal(torch.tensor([0, 1]))) |
| 64 | + self.assertTrue(count.equal(torch.tensor([3, 3]))) |
| 65 | + |
| 66 | + def test_uniform_clip_sampler(self): |
| 67 | + with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list: |
| 68 | + video_clips = VideoClips(video_list, 5, 5) |
| 69 | + sampler = UniformClipSampler(video_clips, 3) |
| 70 | + self.assertEqual(len(sampler), 3 * 3) |
| 71 | + indices = torch.tensor(list(iter(sampler))) |
| 72 | + videos = indices // 5 |
| 73 | + v_idxs, count = torch.unique(videos, return_counts=True) |
| 74 | + self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2]))) |
| 75 | + self.assertTrue(count.equal(torch.tensor([3, 3, 3]))) |
| 76 | + self.assertTrue(indices.equal(torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14]))) |
| 77 | + |
| 78 | + def test_uniform_clip_sampler_insufficient_clips(self): |
| 79 | + with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list: |
| 80 | + video_clips = VideoClips(video_list, 5, 5) |
| 81 | + sampler = UniformClipSampler(video_clips, 3) |
| 82 | + self.assertEqual(len(sampler), 3 * 3) |
| 83 | + indices = torch.tensor(list(iter(sampler))) |
| 84 | + self.assertTrue(indices.equal(torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11]))) |
| 85 | + |
| 86 | + |
| 87 | +if __name__ == '__main__': |
| 88 | + unittest.main() |
0 commit comments