Skip to content

Commit 831ba8c

Browse files
gpleisssoumith
authored andcommitted
Add densenet models (#116)
1 parent e65925d commit 831ba8c

File tree

2 files changed

+165
-0
lines changed

2 files changed

+165
-0
lines changed

torchvision/models/__init__.py

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
- `VGG`_
66
- `ResNet`_
77
- `SqueezeNet`_
8+
- `DenseNet`_
89
910
You can construct a model with random weights by calling its constructor:
1011
@@ -14,6 +15,7 @@
1415
resnet18 = models.resnet18()
1516
alexnet = models.alexnet()
1617
squeezenet = models.squeezenet1_0()
18+
densenet = models.densenet_161()
1719
1820
We provide pre-trained models for the ResNet variants and AlexNet, using the
1921
PyTorch :mod:`torch.utils.model_zoo`. These can constructed by passing
@@ -43,17 +45,23 @@
4345
VGG-19 27.62 9.12
4446
SqueezeNet 1.0 41.90 19.58
4547
SqueezeNet 1.1 41.81 19.38
48+
Densenet-121 25.35 7.83
49+
Densenet-169 24.00 7.00
50+
Densenet-201 22.80 6.43
51+
Densenet-161 22.35 6.20
4652
======================== ============= =============
4753
4854
4955
.. _AlexNet: https://arxiv.org/abs/1404.5997
5056
.. _VGG: https://arxiv.org/abs/1409.1556
5157
.. _ResNet: https://arxiv.org/abs/1512.03385
5258
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
59+
.. _DenseNet: https://arxiv.org/abs/1608.06993
5360
"""
5461

5562
from .alexnet import *
5663
from .resnet import *
5764
from .vgg import *
5865
from .squeezenet import *
5966
from .inception import *
67+
from .densenet import *

torchvision/models/densenet.py

Lines changed: 157 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,157 @@
1+
import torch
2+
import torch.nn as nn
3+
import torch.nn.functional as F
4+
import torch.utils.model_zoo as model_zoo
5+
from collections import OrderedDict
6+
7+
__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']
8+
9+
10+
model_urls = {
11+
'densenet121': 'https://download.pytorch.org/models/densenet121-241335ed.pth',
12+
'densenet169': 'https://download.pytorch.org/models/densenet169-6f0f7f60.pth',
13+
'densenet201': 'https://download.pytorch.org/models/densenet201-4c113574.pth',
14+
'densenet161': 'https://download.pytorch.org/models/densenet161-17b70270.pth',
15+
}
16+
17+
18+
def densenet121(pretrained=False, **kwargs):
19+
r"""Densenet-121 model from
20+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
21+
22+
Args:
23+
pretrained (bool): If True, returns a model pre-trained on ImageNet
24+
"""
25+
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16))
26+
if pretrained:
27+
model.load_state_dict(model_zoo.load_url(model_urls['densenet121']))
28+
return model
29+
30+
31+
def densenet169(pretrained=False, **kwargs):
32+
r"""Densenet-169 model from
33+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
34+
35+
Args:
36+
pretrained (bool): If True, returns a model pre-trained on ImageNet
37+
"""
38+
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32))
39+
if pretrained:
40+
model.load_state_dict(model_zoo.load_url(model_urls['densenet169']))
41+
return model
42+
43+
44+
def densenet201(pretrained=False, **kwargs):
45+
r"""Densenet-201 model from
46+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
47+
48+
Args:
49+
pretrained (bool): If True, returns a model pre-trained on ImageNet
50+
"""
51+
model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32))
52+
if pretrained:
53+
model.load_state_dict(model_zoo.load_url(model_urls['densenet201']))
54+
return model
55+
56+
57+
def densenet161(pretrained=False, **kwargs):
58+
r"""Densenet-201 model from
59+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
60+
61+
Args:
62+
pretrained (bool): If True, returns a model pre-trained on ImageNet
63+
"""
64+
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24))
65+
if pretrained:
66+
model.load_state_dict(model_zoo.load_url(model_urls['densenet161']))
67+
return model
68+
69+
70+
class _DenseLayer(nn.Sequential):
71+
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
72+
super(_DenseLayer, self).__init__()
73+
self.add_module('norm.1', nn.BatchNorm2d(num_input_features)),
74+
self.add_module('relu.1', nn.ReLU(inplace=True)),
75+
self.add_module('conv.1', nn.Conv2d(num_input_features, bn_size *
76+
growth_rate, kernel_size=1, stride=1, bias=False)),
77+
self.add_module('norm.2', nn.BatchNorm2d(bn_size * growth_rate)),
78+
self.add_module('relu.2', nn.ReLU(inplace=True)),
79+
self.add_module('conv.2', nn.Conv2d(bn_size * growth_rate, growth_rate,
80+
kernel_size=3, stride=1, padding=1, bias=False)),
81+
self.drop_rate = drop_rate
82+
83+
def forward(self, x):
84+
new_features = super(_DenseLayer, self).forward(x)
85+
if self.drop_rate > 0:
86+
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
87+
return torch.cat([x, new_features], 1)
88+
89+
90+
class _DenseBlock(nn.Sequential):
91+
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
92+
super(_DenseBlock, self).__init__()
93+
for i in range(num_layers):
94+
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
95+
self.add_module('denselayer%d' % (i + 1), layer)
96+
97+
98+
class _Transition(nn.Sequential):
99+
def __init__(self, num_input_features, num_output_features):
100+
super(_Transition, self).__init__()
101+
self.add_module('norm', nn.BatchNorm2d(num_input_features))
102+
self.add_module('relu', nn.ReLU(inplace=True))
103+
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
104+
kernel_size=1, stride=1, bias=False))
105+
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
106+
107+
108+
class DenseNet(nn.Module):
109+
r"""Densenet-BC model class, based on
110+
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
111+
112+
Args:
113+
growth_rate (int) - how many filters to add each layer (`k` in paper)
114+
block_config (list of 4 ints) - how many layers in each pooling block
115+
num_init_features (int) - the number of filters to learn in the first convolution layer
116+
bn_size (int) - multiplicative factor for number of bottle neck layers
117+
(i.e. bn_size * k features in the bottleneck layer)
118+
drop_rate (float) - dropout rate after each dense layer
119+
num_classes (int) - number of classification classes
120+
"""
121+
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
122+
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):
123+
124+
super(DenseNet, self).__init__()
125+
126+
# First convolution
127+
self.features = nn.Sequential(OrderedDict([
128+
('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
129+
('norm0', nn.BatchNorm2d(num_init_features)),
130+
('relu0', nn.ReLU(inplace=True)),
131+
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
132+
]))
133+
134+
# Each denseblock
135+
num_features = num_init_features
136+
for i, num_layers in enumerate(block_config):
137+
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
138+
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
139+
self.features.add_module('denseblock%d' % (i + 1), block)
140+
num_features = num_features + num_layers * growth_rate
141+
if i != len(block_config) - 1:
142+
trans = _Transition(num_input_features=num_features, num_output_features=num_features / 2)
143+
self.features.add_module('transition%d' % (i + 1), trans)
144+
num_features = num_features / 2
145+
146+
# Final batch norm
147+
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
148+
149+
# Linear layer
150+
self.classifier = nn.Linear(num_features, num_classes)
151+
152+
def forward(self, x):
153+
features = self.features(x)
154+
out = F.relu(features, inplace=True)
155+
out = F.avg_pool2d(out, kernel_size=7).view(features.size(0), -1)
156+
out = self.classifier(out)
157+
return out

0 commit comments

Comments
 (0)