|
| 1 | +""" |
| 2 | +=============================================================== |
| 3 | +Transforms on Rotated Bounding Boxes |
| 4 | +=============================================================== |
| 5 | +
|
| 6 | +This example illustrates how to define and use rotated bounding boxes. We'll |
| 7 | +cover how to define them, demonstrate their usage with some of the existing |
| 8 | +transforms, and finally some of their unique behavior in comparision to |
| 9 | +standard bounding boxes. |
| 10 | +
|
| 11 | +First, a bit of setup code: |
| 12 | +""" |
| 13 | + |
| 14 | +# %% |
| 15 | +from PIL import Image |
| 16 | +from pathlib import Path |
| 17 | +import matplotlib.pyplot as plt |
| 18 | + |
| 19 | + |
| 20 | +import torch |
| 21 | +from torchvision import tv_tensors |
| 22 | +from torchvision.transforms import v2 |
| 23 | +from helpers import plot |
| 24 | + |
| 25 | +plt.rcParams["figure.figsize"] = [10, 5] |
| 26 | +plt.rcParams["savefig.bbox"] = "tight" |
| 27 | + |
| 28 | +# if you change the seed, make sure that the randomly-applied transforms |
| 29 | +# properly show that the image can be both transformed and *not* transformed! |
| 30 | +torch.manual_seed(0) |
| 31 | + |
| 32 | +# If you're trying to run that on Colab, you can download the assets and the |
| 33 | +# helpers from https://github.com/pytorch/vision/tree/main/gallery/ |
| 34 | +orig_img = Image.open(Path('../assets') / 'leaning_tower.jpg') |
| 35 | + |
| 36 | +# %% |
| 37 | +# Creating a Rotated Bounding Box |
| 38 | +# ------------------------------- |
| 39 | +# Rotated bounding boxes are created by instantiating the |
| 40 | +# :class:`~torchvision.tv_tensors.BoundingBoxes` class. It's the `format` |
| 41 | +# parameter of the constructor that determines if a bounding box is rotated or |
| 42 | +# not. In this instance, we use the |
| 43 | +# :attr:`~torchvision.tv_tensors.BoundingBoxFormat` kind `CXCYWHR`. The first |
| 44 | +# two values are the `x` and `y` coordinates of the center of the bounding box. |
| 45 | +# The next two values are the `width` and `height` of the bounding box, and the |
| 46 | +# last value is the `rotation` of the bounding box. |
| 47 | + |
| 48 | + |
| 49 | +orig_box = tv_tensors.BoundingBoxes( |
| 50 | + [ |
| 51 | + [860.0, 1100, 570, 1840, -7], |
| 52 | + ], |
| 53 | + format="CXCYWHR", |
| 54 | + canvas_size=(orig_img.size[1], orig_img.size[0]), |
| 55 | +) |
| 56 | + |
| 57 | +plot([(orig_img, orig_box)], bbox_width=10) |
| 58 | + |
| 59 | +# %% |
| 60 | +# Rotation |
| 61 | +# -------- |
| 62 | +# Rotated bounding boxes maintain their rotation with respect to the image even |
| 63 | +# when the image itself is rotated through the |
| 64 | +# :class:`~torchvision.transforms.RandomRotation` transform. |
| 65 | +rotater = v2.RandomRotation(degrees=(0, 180), expand=True) |
| 66 | +rotated_imgs = [rotater((orig_img, orig_box)) for _ in range(4)] |
| 67 | +plot([(orig_img, orig_box)] + rotated_imgs, bbox_width=10) |
| 68 | + |
| 69 | +# %% |
| 70 | +# Padding |
| 71 | +# ------- |
| 72 | +# Rotated bounding boxes also maintain their properties when the image is padded using |
| 73 | +# :class:`~torchvision.transforms.Pad`. |
| 74 | +padded_imgs_and_boxes = [ |
| 75 | + v2.Pad(padding=padding)(orig_img, orig_box) |
| 76 | + for padding in (30, 50, 100, 200) |
| 77 | +] |
| 78 | +plot([(orig_img, orig_box)] + padded_imgs_and_boxes, bbox_width=10) |
| 79 | + |
| 80 | +# %% |
| 81 | +# Resizing |
| 82 | +# -------- |
| 83 | +# Rotated bounding boxes are also resized along with an image in the |
| 84 | +# :class:`~torchvision.transforms.Resize` transform. |
| 85 | +# |
| 86 | +# Note that the bounding box looking bigger in the images with less pixels is |
| 87 | +# an artifact, not reality. That is merely the rasterised representation of the |
| 88 | +# bounding box's boundaries appearing bigger because we specify a fixed width of |
| 89 | +# that rasterized line. When the image is, say, only 30 pixels wide, a |
| 90 | +# line that is 3 pixels wide is relatively large. |
| 91 | +resized_imgs = [ |
| 92 | + v2.Resize(size=size)(orig_img, orig_box) |
| 93 | + for size in (30, 50, 100, orig_img.size) |
| 94 | +] |
| 95 | +plot([(orig_img, orig_box)] + resized_imgs, bbox_width=5) |
| 96 | + |
| 97 | +# %% |
| 98 | +# Perspective |
| 99 | +# ----------- |
| 100 | +# The rotated bounding box is also transformed along with the image when the |
| 101 | +# perspective is transformed with :class:`~torchvision.transforms.RandomPerspective`. |
| 102 | +perspective_transformer = v2.RandomPerspective(distortion_scale=0.6, p=1.0) |
| 103 | +perspective_imgs = [perspective_transformer(orig_img, orig_box) for _ in range(4)] |
| 104 | +plot([(orig_img, orig_box)] + perspective_imgs, bbox_width=10) |
| 105 | + |
| 106 | +# %% |
| 107 | +# Elastic Transform |
| 108 | +# ----------------- |
| 109 | +# The rotated bounding box is appropriately unchanged when going through the |
| 110 | +# :class:`~torchvision.transforms.ElasticTransform`. |
| 111 | +elastic_imgs = [ |
| 112 | + v2.ElasticTransform(alpha=alpha)(orig_img, orig_box) |
| 113 | + for alpha in (100.0, 500.0, 1000.0, 2000.0) |
| 114 | +] |
| 115 | +plot([(orig_img, orig_box)] + elastic_imgs, bbox_width=10) |
| 116 | + |
| 117 | +# %% |
| 118 | +# Crop & Clamping Modes |
| 119 | +# --------------------- |
| 120 | +# The :class:`~torchvision.transforms.CenterCrop` transform selectively crops |
| 121 | +# the image on a center location. The behavior of the rotated bounding box |
| 122 | +# depends on its `clamping_mode`. We can set the `clamping_mode` in the |
| 123 | +# :class:`~torchvision.tv_tensors.BoundingBoxes` constructur, or by directly |
| 124 | +# setting it after construction as we do in the example below. |
| 125 | +# |
| 126 | +# There are two values for `clamping_mode`: |
| 127 | +# |
| 128 | +# - `"soft"`: The default when constucting |
| 129 | +# :class:`~torchvision.tv_tensors.BoundingBoxes`. <Insert semantic |
| 130 | +# description for soft mode.> |
| 131 | +# - `"hard"`: <Insert semantic description for hard mode.> |
| 132 | +# |
| 133 | +# For standard bounding boxes, both modes behave the same. We also need to |
| 134 | +# document: |
| 135 | +# |
| 136 | +# - `clamping_mode` for individual kernels. |
| 137 | +# - `clamping_mode` in :class:`~torchvision.transforms.v2.ClampBoundingBoxes`. |
| 138 | +# - the new :class:`~torchvision.transforms.v2.SetClampingMode` transform. |
| 139 | +# |
| 140 | +assert orig_box.clamping_mode == "soft" |
| 141 | +hard_box = orig_box.clone() |
| 142 | +hard_box.clamping_mode = "hard" |
| 143 | + |
| 144 | +soft_center_crops_and_boxes = [ |
| 145 | + v2.CenterCrop(size=size)(orig_img, orig_box) |
| 146 | + for size in (800, 1200, 2000, orig_img.size) |
| 147 | +] |
| 148 | + |
| 149 | +hard_center_crops_and_boxes = [ |
| 150 | + v2.CenterCrop(size=size)(orig_img, hard_box) |
| 151 | + for size in (800, 1200, 2000, orig_img.size) |
| 152 | +] |
| 153 | + |
| 154 | +plot([[(orig_img, orig_box)] + soft_center_crops_and_boxes, |
| 155 | + [(orig_img, hard_box)] + hard_center_crops_and_boxes], |
| 156 | + bbox_width=10) |
0 commit comments