@@ -1355,7 +1355,7 @@ def test_transform_bounding_boxes_correctness(self, format, center, seed):
13551355 transform = transforms .RandomAffine (** self ._CORRECTNESS_TRANSFORM_AFFINE_RANGES , center = center )
13561356
13571357 torch .manual_seed (seed )
1358- params = transform ._get_params ([bounding_boxes ])
1358+ params = transform .make_params ([bounding_boxes ])
13591359
13601360 torch .manual_seed (seed )
13611361 actual = transform (bounding_boxes )
@@ -1369,14 +1369,14 @@ def test_transform_bounding_boxes_correctness(self, format, center, seed):
13691369 @pytest .mark .parametrize ("scale" , _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES ["scale" ])
13701370 @pytest .mark .parametrize ("shear" , _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES ["shear" ])
13711371 @pytest .mark .parametrize ("seed" , list (range (10 )))
1372- def test_transform_get_params_bounds (self , degrees , translate , scale , shear , seed ):
1372+ def test_transformmake_params_bounds (self , degrees , translate , scale , shear , seed ):
13731373 image = make_image ()
13741374 height , width = F .get_size (image )
13751375
13761376 transform = transforms .RandomAffine (degrees = degrees , translate = translate , scale = scale , shear = shear )
13771377
13781378 torch .manual_seed (seed )
1379- params = transform ._get_params ([image ])
1379+ params = transform .make_params ([image ])
13801380
13811381 if isinstance (degrees , (int , float )):
13821382 assert - degrees <= params ["angle" ] <= degrees
@@ -1783,7 +1783,7 @@ def test_transform_bounding_boxes_correctness(self, format, expand, center, seed
17831783 transform = transforms .RandomRotation (** self ._CORRECTNESS_TRANSFORM_AFFINE_RANGES , expand = expand , center = center )
17841784
17851785 torch .manual_seed (seed )
1786- params = transform ._get_params ([bounding_boxes ])
1786+ params = transform .make_params ([bounding_boxes ])
17871787
17881788 torch .manual_seed (seed )
17891789 actual = transform (bounding_boxes )
@@ -1795,11 +1795,11 @@ def test_transform_bounding_boxes_correctness(self, format, expand, center, seed
17951795
17961796 @pytest .mark .parametrize ("degrees" , _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES ["degrees" ])
17971797 @pytest .mark .parametrize ("seed" , list (range (10 )))
1798- def test_transform_get_params_bounds (self , degrees , seed ):
1798+ def test_transformmake_params_bounds (self , degrees , seed ):
17991799 transform = transforms .RandomRotation (degrees = degrees )
18001800
18011801 torch .manual_seed (seed )
1802- params = transform ._get_params ([])
1802+ params = transform .make_params ([])
18031803
18041804 if isinstance (degrees , (int , float )):
18051805 assert - degrees <= params ["angle" ] <= degrees
@@ -2996,7 +2996,7 @@ def test_transform_bounding_boxes_correctness(self, output_size, format, dtype,
29962996
29972997 with freeze_rng_state ():
29982998 torch .manual_seed (seed )
2999- params = transform ._get_params ([bounding_boxes ])
2999+ params = transform .make_params ([bounding_boxes ])
30003000 assert not params .pop ("needs_pad" )
30013001 del params ["padding" ]
30023002 assert params .pop ("needs_crop" )
@@ -3129,9 +3129,9 @@ def test_transform_image_correctness(self, param, value, dtype, device, seed):
31293129
31303130 with freeze_rng_state ():
31313131 torch .manual_seed (seed )
3132- # This emulates the random apply check that happens before _get_params is called
3132+ # This emulates the random apply check that happens before make_params is called
31333133 torch .rand (1 )
3134- params = transform ._get_params ([image ])
3134+ params = transform .make_params ([image ])
31353135
31363136 torch .manual_seed (seed )
31373137 actual = transform (image )
@@ -3159,7 +3159,7 @@ def test_transform_errors(self):
31593159 transform = transforms .RandomErasing (value = [1 , 2 , 3 , 4 ])
31603160
31613161 with pytest .raises (ValueError , match = "If value is a sequence, it should have either a single value" ):
3162- transform ._get_params ([make_image ()])
3162+ transform .make_params ([make_image ()])
31633163
31643164
31653165class TestGaussianBlur :
@@ -3244,9 +3244,9 @@ def test_assertions(self):
32443244 transforms .GaussianBlur (3 , sigma = {})
32453245
32463246 @pytest .mark .parametrize ("sigma" , [10.0 , [10.0 , 12.0 ], (10 , 12.0 ), [10 ]])
3247- def test__get_params (self , sigma ):
3247+ def test_make_params (self , sigma ):
32483248 transform = transforms .GaussianBlur (3 , sigma = sigma )
3249- params = transform ._get_params ([])
3249+ params = transform .make_params ([])
32503250
32513251 if isinstance (sigma , float ):
32523252 assert params ["sigma" ][0 ] == params ["sigma" ][1 ] == sigma
@@ -5251,7 +5251,7 @@ def test_transform_params_correctness(self, side_range, make_input, device):
52515251 input = make_input ()
52525252 height , width = F .get_size (input )
52535253
5254- params = transform ._get_params ([input ])
5254+ params = transform .make_params ([input ])
52555255 assert "padding" in params
52565256
52575257 padding = params ["padding" ]
@@ -5305,13 +5305,13 @@ def test_transform(self, make_input, device):
53055305
53065306 check_transform (transforms .ScaleJitter (self .TARGET_SIZE ), make_input (self .INPUT_SIZE , device = device ))
53075307
5308- def test__get_params (self ):
5308+ def test_make_params (self ):
53095309 input_size = self .INPUT_SIZE
53105310 target_size = self .TARGET_SIZE
53115311 scale_range = (0.5 , 1.5 )
53125312
53135313 transform = transforms .ScaleJitter (target_size = target_size , scale_range = scale_range )
5314- params = transform ._get_params ([make_image (input_size )])
5314+ params = transform .make_params ([make_image (input_size )])
53155315
53165316 assert "size" in params
53175317 size = params ["size" ]
@@ -5580,7 +5580,7 @@ def was_applied(output, inpt):
55805580class TestRandomIoUCrop :
55815581 @pytest .mark .parametrize ("device" , cpu_and_cuda ())
55825582 @pytest .mark .parametrize ("options" , [[0.5 , 0.9 ], [2.0 ]])
5583- def test__get_params (self , device , options ):
5583+ def test_make_params (self , device , options ):
55845584 orig_h , orig_w = size = (24 , 32 )
55855585 image = make_image (size )
55865586 bboxes = tv_tensors .BoundingBoxes (
@@ -5596,7 +5596,7 @@ def test__get_params(self, device, options):
55965596 n_samples = 5
55975597 for _ in range (n_samples ):
55985598
5599- params = transform ._get_params (sample )
5599+ params = transform .make_params (sample )
56005600
56015601 if options == [2.0 ]:
56025602 assert len (params ) == 0
@@ -5622,8 +5622,8 @@ def test__transform_empty_params(self, mocker):
56225622 bboxes = tv_tensors .BoundingBoxes (torch .tensor ([[1 , 1 , 2 , 2 ]]), format = "XYXY" , canvas_size = (4 , 4 ))
56235623 label = torch .tensor ([1 ])
56245624 sample = [image , bboxes , label ]
5625- # Let's mock transform._get_params to control the output:
5626- transform ._get_params = mocker .MagicMock (return_value = {})
5625+ # Let's mock transform.make_params to control the output:
5626+ transform .make_params = mocker .MagicMock (return_value = {})
56275627 output = transform (sample )
56285628 torch .testing .assert_close (output , sample )
56295629
@@ -5648,7 +5648,7 @@ def test__transform(self, mocker):
56485648 is_within_crop_area = torch .tensor ([0 , 1 , 0 , 1 , 0 , 1 ], dtype = torch .bool )
56495649
56505650 params = dict (top = 1 , left = 2 , height = 12 , width = 12 , is_within_crop_area = is_within_crop_area )
5651- transform ._get_params = mocker .MagicMock (return_value = params )
5651+ transform .make_params = mocker .MagicMock (return_value = params )
56525652 output = transform (sample )
56535653
56545654 # check number of bboxes vs number of labels:
@@ -5662,13 +5662,13 @@ def test__transform(self, mocker):
56625662
56635663class TestRandomShortestSize :
56645664 @pytest .mark .parametrize ("min_size,max_size" , [([5 , 9 ], 20 ), ([5 , 9 ], None )])
5665- def test__get_params (self , min_size , max_size ):
5665+ def test_make_params (self , min_size , max_size ):
56665666 canvas_size = (3 , 10 )
56675667
56685668 transform = transforms .RandomShortestSize (min_size = min_size , max_size = max_size , antialias = True )
56695669
56705670 sample = make_image (canvas_size )
5671- params = transform ._get_params ([sample ])
5671+ params = transform .make_params ([sample ])
56725672
56735673 assert "size" in params
56745674 size = params ["size" ]
@@ -5685,14 +5685,14 @@ def test__get_params(self, min_size, max_size):
56855685
56865686
56875687class TestRandomResize :
5688- def test__get_params (self ):
5688+ def test_make_params (self ):
56895689 min_size = 3
56905690 max_size = 6
56915691
56925692 transform = transforms .RandomResize (min_size = min_size , max_size = max_size , antialias = True )
56935693
56945694 for _ in range (10 ):
5695- params = transform ._get_params ([])
5695+ params = transform .make_params ([])
56965696
56975697 assert isinstance (params ["size" ], list ) and len (params ["size" ]) == 1
56985698 size = params ["size" ][0 ]
@@ -6148,12 +6148,12 @@ def test_transform_image_correctness(self, quality, color_space, seed):
61486148
61496149 @pytest .mark .parametrize ("quality" , [5 , (10 , 20 )])
61506150 @pytest .mark .parametrize ("seed" , list (range (10 )))
6151- def test_transform_get_params_bounds (self , quality , seed ):
6151+ def test_transformmake_params_bounds (self , quality , seed ):
61526152 transform = transforms .JPEG (quality = quality )
61536153
61546154 with freeze_rng_state ():
61556155 torch .manual_seed (seed )
6156- params = transform ._get_params ([])
6156+ params = transform .make_params ([])
61576157
61586158 if isinstance (quality , int ):
61596159 assert params ["quality" ] == quality
0 commit comments