@@ -31,7 +31,7 @@ class MaskRCNN(FasterRCNN):
31
31
- boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with values
32
32
between 0 and H and 0 and W
33
33
- labels (Int64Tensor[N]): the class label for each ground-truth box
34
- - masks (UInt8Tensor[N, 1, H, W]): the segmentation binary masks for each instance
34
+ - masks (UInt8Tensor[N, H, W]): the segmentation binary masks for each instance
35
35
36
36
The model returns a Dict[Tensor] during training, containing the classification and regression
37
37
losses for both the RPN and the R-CNN, and the mask loss.
@@ -278,7 +278,7 @@ def maskrcnn_resnet50_fpn(pretrained=False, progress=True,
278
278
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with values
279
279
between ``0`` and ``H`` and ``0`` and ``W``
280
280
- labels (``Int64Tensor[N]``): the class label for each ground-truth box
281
- - masks (``UInt8Tensor[N, 1, H, W]``): the segmentation binary masks for each instance
281
+ - masks (``UInt8Tensor[N, H, W]``): the segmentation binary masks for each instance
282
282
283
283
The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
284
284
losses for both the RPN and the R-CNN, and the mask loss.
0 commit comments