@@ -146,20 +146,56 @@ def _shufflenetv2(arch, pretrained, progress, *args, **kwargs):
146
146
147
147
148
148
def shufflenet_v2_x0_5 (pretrained = False , progress = True , ** kwargs ):
149
+ """
150
+ Constructs a ShuffleNetV2 with 0.5x output channels, as described in
151
+ `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
152
+ <https://arxiv.org/abs/1807.11164>`_.
153
+
154
+ Args:
155
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
156
+ progress (bool): If True, displays a progress bar of the download to stderr
157
+ """
149
158
return _shufflenetv2 ('shufflenetv2_x0.5' , pretrained , progress ,
150
159
[4 , 8 , 4 ], [24 , 48 , 96 , 192 , 1024 ], ** kwargs )
151
160
152
161
153
162
def shufflenet_v2_x1_0 (pretrained = False , progress = True , ** kwargs ):
163
+ """
164
+ Constructs a ShuffleNetV2 with 1.0x output channels, as described in
165
+ `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
166
+ <https://arxiv.org/abs/1807.11164>`_.
167
+
168
+ Args:
169
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
170
+ progress (bool): If True, displays a progress bar of the download to stderr
171
+ """
154
172
return _shufflenetv2 ('shufflenetv2_x1.0' , pretrained , progress ,
155
173
[4 , 8 , 4 ], [24 , 116 , 232 , 464 , 1024 ], ** kwargs )
156
174
157
175
158
176
def shufflenet_v2_x1_5 (pretrained = False , progress = True , ** kwargs ):
177
+ """
178
+ Constructs a ShuffleNetV2 with 1.5x output channels, as described in
179
+ `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
180
+ <https://arxiv.org/abs/1807.11164>`_.
181
+
182
+ Args:
183
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
184
+ progress (bool): If True, displays a progress bar of the download to stderr
185
+ """
159
186
return _shufflenetv2 ('shufflenetv2_x1.5' , pretrained , progress ,
160
187
[4 , 8 , 4 ], [24 , 176 , 352 , 704 , 1024 ], ** kwargs )
161
188
162
189
163
190
def shufflenet_v2_x2_0 (pretrained = False , progress = True , ** kwargs ):
191
+ """
192
+ Constructs a ShuffleNetV2 with 2.0x output channels, as described in
193
+ `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
194
+ <https://arxiv.org/abs/1807.11164>`_.
195
+
196
+ Args:
197
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
198
+ progress (bool): If True, displays a progress bar of the download to stderr
199
+ """
164
200
return _shufflenetv2 ('shufflenetv2_x2.0' , pretrained , progress ,
165
201
[4 , 8 , 4 ], [24 , 244 , 488 , 976 , 2048 ], ** kwargs )
0 commit comments