|
12 | 12 | 'resnet34': 'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth',
|
13 | 13 | 'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth',
|
14 | 14 | 'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth',
|
| 15 | + 'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth', |
15 | 16 | }
|
16 | 17 |
|
17 | 18 |
|
@@ -152,32 +153,60 @@ def forward(self, x):
|
152 | 153 |
|
153 | 154 |
|
154 | 155 | def resnet18(pretrained=False):
|
| 156 | + """Constructs a ResNet-18 model. |
| 157 | +
|
| 158 | + Args: |
| 159 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 160 | + """ |
155 | 161 | model = ResNet(BasicBlock, [2, 2, 2, 2])
|
156 | 162 | if pretrained:
|
157 | 163 | model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
|
158 | 164 | return model
|
159 | 165 |
|
160 | 166 |
|
161 | 167 | def resnet34(pretrained=False):
|
| 168 | + """Constructs a ResNet-34 model. |
| 169 | +
|
| 170 | + Args: |
| 171 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 172 | + """ |
162 | 173 | model = ResNet(BasicBlock, [3, 4, 6, 3])
|
163 | 174 | if pretrained:
|
164 | 175 | model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
|
165 | 176 | return model
|
166 | 177 |
|
167 | 178 |
|
168 | 179 | def resnet50(pretrained=False):
|
| 180 | + """Constructs a ResNet-50 model. |
| 181 | +
|
| 182 | + Args: |
| 183 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 184 | + """ |
169 | 185 | model = ResNet(Bottleneck, [3, 4, 6, 3])
|
170 | 186 | if pretrained:
|
171 | 187 | model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
|
172 | 188 | return model
|
173 | 189 |
|
174 | 190 |
|
175 | 191 | def resnet101(pretrained=False):
|
| 192 | + """Constructs a ResNet-101 model. |
| 193 | +
|
| 194 | + Args: |
| 195 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 196 | + """ |
176 | 197 | model = ResNet(Bottleneck, [3, 4, 23, 3])
|
177 | 198 | if pretrained:
|
178 | 199 | model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
|
179 | 200 | return model
|
180 | 201 |
|
181 | 202 |
|
182 |
| -def resnet152(): |
183 |
| - return ResNet(Bottleneck, [3, 8, 36, 3]) |
| 203 | +def resnet152(pretrained=False): |
| 204 | + """Constructs a ResNet-152 model. |
| 205 | +
|
| 206 | + Args: |
| 207 | + pretrained (bool): If True, returns a model pre-trained on ImageNet |
| 208 | + """ |
| 209 | + model = ResNet(Bottleneck, [3, 8, 36, 3]) |
| 210 | + if pretrained: |
| 211 | + model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) |
| 212 | + return model |
0 commit comments