|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Diagonal Coulomb Hamiltonians\n", |
| 8 | + "\n", |
| 9 | + "This page explains the diagonal Coulomb Hamiltonian, a restricted but important class of fermionic Hamiltonians.\n", |
| 10 | + "\n", |
| 11 | + "## Definition\n", |
| 12 | + "\n", |
| 13 | + "A diagonal Coulomb Hamiltonian has the form\n", |
| 14 | + "\n", |
| 15 | + "$$\n", |
| 16 | + " H = \\sum_{\\sigma, pq} h_{pq} a^\\dagger_{\\sigma, p} a_{\\sigma, q}\n", |
| 17 | + " + \\frac12 \\sum_{\\sigma \\tau, pq} J^{\\sigma \\tau}_{pq} n_{\\sigma, p}\n", |
| 18 | + " n_{\\tau, q} + \\text{constant}\n", |
| 19 | + "$$\n", |
| 20 | + "\n", |
| 21 | + "where $n_{\\sigma, p} = a^\\dagger_{\\sigma, p} a_{\\sigma, p}$ is the number operator on orbital $p$ with spin $\\sigma$.\n", |
| 22 | + "\n", |
| 23 | + "The Hamiltonian is specified by the following data ($N$ is the number of spatial orbitals):\n", |
| 24 | + "\n", |
| 25 | + "- The one-body tensor $h_{pq}$, which is an $N \\times N$ Hermitian matrix.\n", |
| 26 | + "- The diagonal Coulomb matrices $J^{\\sigma \\tau}$, given as a pair of $N \\times N$ real symmetric matrices specifying the independent coefficients for alpha-alpha and alpha-beta interactions. We require that $J^{\\alpha\\alpha} = J^{\\beta\\beta}$ and $J^{\\alpha\\beta} = J^{\\beta\\alpha}$, so only two matrices are needed.\n", |
| 27 | + "- The constant, which is a real number.\n", |
| 28 | + "\n", |
| 29 | + "Compared to the general [molecular Hamiltonian](hamiltonians.ipynb), the two-body interaction is restricted to density-density form ($n_{\\sigma, p} n_{\\tau, q}$ terms). This restriction means the two-body part is specified by $O(N^2)$ parameters rather than $O(N^4)$, which enables more efficient simulation.\n", |
| 30 | + "\n", |
| 31 | + "## Data representation\n", |
| 32 | + "\n", |
| 33 | + "A diagonal Coulomb Hamiltonian is represented in ffsim using the [DiagonalCoulombHamiltonian](../api/ffsim.rst#ffsim.DiagonalCoulombHamiltonian) class. You can initialize it by passing the one-body tensor, the diagonal Coulomb matrices, and an optional constant." |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": 1, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [ |
| 41 | + { |
| 42 | + "name": "stdout", |
| 43 | + "output_type": "stream", |
| 44 | + "text": [ |
| 45 | + "Number of orbitals: 4\n", |
| 46 | + "One-body tensor shape: (4, 4)\n", |
| 47 | + "Diagonal Coulomb matrices shape: (2, 4, 4)\n", |
| 48 | + "Constant: -1.6404178369858733\n" |
| 49 | + ] |
| 50 | + } |
| 51 | + ], |
| 52 | + "source": [ |
| 53 | + "import numpy as np\n", |
| 54 | + "\n", |
| 55 | + "import ffsim\n", |
| 56 | + "\n", |
| 57 | + "# Use 4 spatial orbitals, as an example.\n", |
| 58 | + "norb = 4\n", |
| 59 | + "\n", |
| 60 | + "rng = np.random.default_rng(12345)\n", |
| 61 | + "one_body_tensor = ffsim.random.random_hermitian(norb, seed=rng)\n", |
| 62 | + "diag_coulomb_mats = np.array(\n", |
| 63 | + " [\n", |
| 64 | + " ffsim.random.random_real_symmetric_matrix(norb, seed=rng),\n", |
| 65 | + " ffsim.random.random_real_symmetric_matrix(norb, seed=rng),\n", |
| 66 | + " ]\n", |
| 67 | + ")\n", |
| 68 | + "constant = rng.standard_normal()\n", |
| 69 | + "\n", |
| 70 | + "hamiltonian = ffsim.DiagonalCoulombHamiltonian(\n", |
| 71 | + " one_body_tensor=one_body_tensor,\n", |
| 72 | + " diag_coulomb_mats=diag_coulomb_mats,\n", |
| 73 | + " constant=constant,\n", |
| 74 | + ")\n", |
| 75 | + "\n", |
| 76 | + "print(f\"Number of orbitals: {hamiltonian.norb}\")\n", |
| 77 | + "print(f\"One-body tensor shape: {hamiltonian.one_body_tensor.shape}\")\n", |
| 78 | + "print(f\"Diagonal Coulomb matrices shape: {hamiltonian.diag_coulomb_mats.shape}\")\n", |
| 79 | + "print(f\"Constant: {hamiltonian.constant}\")" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "metadata": {}, |
| 85 | + "source": [ |
| 86 | + "The `diag_coulomb_mats` attribute has shape `(2, N, N)`. The first matrix (`diag_coulomb_mats[0]`) contains the alpha-alpha (equivalently, beta-beta) interactions, and the second matrix (`diag_coulomb_mats[1]`) contains the alpha-beta (equivalently, beta-alpha) interactions.\n", |
| 87 | + "\n", |
| 88 | + "## Example: Fermi-Hubbard model\n", |
| 89 | + "\n", |
| 90 | + "The [Fermi-Hubbard model](https://en.wikipedia.org/wiki/Hubbard_model) is a widely studied example of a Hamiltonian with diagonal Coulomb form, since its two-body interaction is an onsite density-density interaction. The two-dimensional Fermi-Hubbard Hamiltonian on a square lattice is given by\n", |
| 91 | + "\n", |
| 92 | + "$$\n", |
| 93 | + " H = -t \\sum_{\\sigma, \\langle pq \\rangle}\n", |
| 94 | + " (a^\\dagger_{\\sigma, p} a_{\\sigma, q} + a^\\dagger_{\\sigma, q} a_{\\sigma, p})\n", |
| 95 | + " + U \\sum_p n_{\\alpha, p} n_{\\beta, p}\n", |
| 96 | + " - \\mu \\sum_p (n_{\\alpha, p} + n_{\\beta, p})\n", |
| 97 | + "$$\n", |
| 98 | + "\n", |
| 99 | + "where $t$ is the tunneling amplitude, $U$ is the onsite interaction strength, and $\\mu$ is the chemical potential. The index $\\langle pq \\rangle$ runs over pairs of neighboring orbitals on the lattice.\n", |
| 100 | + "\n", |
| 101 | + "The two-dimensional Fermi-Hubbard Hamiltonian can be constructed as a [FermionOperator](../api/ffsim.rst#ffsim.FermionOperator) using the [fermi_hubbard_2d](../api/ffsim.rst#ffsim.fermi_hubbard_2d) function, and then converted to a `DiagonalCoulombHamiltonian` using the `from_fermion_operator` method." |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 2, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [ |
| 109 | + { |
| 110 | + "name": "stdout", |
| 111 | + "output_type": "stream", |
| 112 | + "text": [ |
| 113 | + "One-body tensor:\n", |
| 114 | + "[[-2. -1. -1. 0.]\n", |
| 115 | + " [-1. -2. 0. -1.]\n", |
| 116 | + " [-1. 0. -2. -1.]\n", |
| 117 | + " [ 0. -1. -1. -2.]]\n", |
| 118 | + "\n", |
| 119 | + "Diagonal Coulomb matrix (alpha-alpha):\n", |
| 120 | + "[[0. 0. 0. 0.]\n", |
| 121 | + " [0. 0. 0. 0.]\n", |
| 122 | + " [0. 0. 0. 0.]\n", |
| 123 | + " [0. 0. 0. 0.]]\n", |
| 124 | + "\n", |
| 125 | + "Diagonal Coulomb matrix (alpha-beta):\n", |
| 126 | + "[[4. 0. 0. 0.]\n", |
| 127 | + " [0. 4. 0. 0.]\n", |
| 128 | + " [0. 0. 4. 0.]\n", |
| 129 | + " [0. 0. 0. 4.]]\n", |
| 130 | + "\n", |
| 131 | + "Constant: 0\n" |
| 132 | + ] |
| 133 | + } |
| 134 | + ], |
| 135 | + "source": [ |
| 136 | + "norb_x = 2\n", |
| 137 | + "norb_y = 2\n", |
| 138 | + "norb = norb_x * norb_y\n", |
| 139 | + "nelec = (2, 2)\n", |
| 140 | + "\n", |
| 141 | + "# Build the Fermi-Hubbard Hamiltonian as a FermionOperator\n", |
| 142 | + "hubbard_op = ffsim.fermi_hubbard_2d(\n", |
| 143 | + " norb_x=norb_x,\n", |
| 144 | + " norb_y=norb_y,\n", |
| 145 | + " tunneling=1.0,\n", |
| 146 | + " interaction=4.0,\n", |
| 147 | + " chemical_potential=2.0,\n", |
| 148 | + ")\n", |
| 149 | + "\n", |
| 150 | + "# Convert to a DiagonalCoulombHamiltonian\n", |
| 151 | + "hubbard_ham = ffsim.DiagonalCoulombHamiltonian.from_fermion_operator(hubbard_op)\n", |
| 152 | + "\n", |
| 153 | + "print(f\"One-body tensor:\\n{hubbard_ham.one_body_tensor.real}\")\n", |
| 154 | + "print(f\"\\nDiagonal Coulomb matrix (alpha-alpha):\\n{hubbard_ham.diag_coulomb_mats[0]}\")\n", |
| 155 | + "print(f\"\\nDiagonal Coulomb matrix (alpha-beta):\\n{hubbard_ham.diag_coulomb_mats[1]}\")\n", |
| 156 | + "print(f\"\\nConstant: {hubbard_ham.constant}\")" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "We can verify that the `DiagonalCoulombHamiltonian` representation yields the same ground state energy as the original `FermionOperator`." |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": 3, |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [ |
| 171 | + { |
| 172 | + "name": "stdout", |
| 173 | + "output_type": "stream", |
| 174 | + "text": [ |
| 175 | + "Energy (DiagonalCoulombHamiltonian): -10.10274848346205\n", |
| 176 | + "Energy (FermionOperator): -10.102748483462063\n" |
| 177 | + ] |
| 178 | + } |
| 179 | + ], |
| 180 | + "source": [ |
| 181 | + "import scipy.sparse.linalg\n", |
| 182 | + "\n", |
| 183 | + "# Compute the ground state energy using the DiagonalCoulombHamiltonian\n", |
| 184 | + "linop = ffsim.linear_operator(hubbard_ham, norb=norb, nelec=nelec)\n", |
| 185 | + "eigs, _ = scipy.sparse.linalg.eigsh(linop, k=1, which=\"SA\")\n", |
| 186 | + "energy_diag_coulomb = eigs[0]\n", |
| 187 | + "\n", |
| 188 | + "# Compute the ground state energy using the FermionOperator\n", |
| 189 | + "linop_op = ffsim.linear_operator(hubbard_op, norb=norb, nelec=nelec)\n", |
| 190 | + "eigs_op, _ = scipy.sparse.linalg.eigsh(linop_op, k=1, which=\"SA\")\n", |
| 191 | + "energy_op = eigs_op[0]\n", |
| 192 | + "\n", |
| 193 | + "print(f\"Energy (DiagonalCoulombHamiltonian): {energy_diag_coulomb}\")\n", |
| 194 | + "print(f\"Energy (FermionOperator): {energy_op}\")\n", |
| 195 | + "\n", |
| 196 | + "np.testing.assert_allclose(energy_diag_coulomb, energy_op)" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "metadata": {}, |
| 202 | + "source": [ |
| 203 | + "## Time evolution via Trotter-Suzuki formulas\n", |
| 204 | + "\n", |
| 205 | + "The diagonal Coulomb Hamiltonian can be decomposed into two terms for the purpose of Trotter-Suzuki simulation:\n", |
| 206 | + "\n", |
| 207 | + "$$\n", |
| 208 | + " H = H_0 + H_1 + \\text{constant},\n", |
| 209 | + "$$\n", |
| 210 | + "\n", |
| 211 | + "where\n", |
| 212 | + "\n", |
| 213 | + "$$\n", |
| 214 | + " H_0 = \\sum_{\\sigma, pq} h_{pq} a^\\dagger_{\\sigma, p} a_{\\sigma, q}\n", |
| 215 | + "$$\n", |
| 216 | + "\n", |
| 217 | + "is a quadratic Hamiltonian and\n", |
| 218 | + "\n", |
| 219 | + "$$\n", |
| 220 | + " H_1 = \\frac12 \\sum_{\\sigma \\tau, pq} J^{\\sigma \\tau}_{pq} n_{\\sigma, p} n_{\\tau, q}\n", |
| 221 | + "$$\n", |
| 222 | + "\n", |
| 223 | + "is a diagonal Coulomb operator. Note,\n", |
| 224 | + "\n", |
| 225 | + "- $H_0$ can be simulated exactly using [orbital rotations](orbital-rotation.ipynb#Application-to-time-evolution-by-a-quadratic-Hamiltonian).\n", |
| 226 | + "- $H_1$ can be simulated exactly using [apply_diag_coulomb_evolution](../api/ffsim.rst#ffsim.apply_diag_coulomb_evolution).\n", |
| 227 | + "\n", |
| 228 | + "This split-operator approach is implemented in ffsim by the function [simulate_trotter_diag_coulomb_split_op](../api/ffsim.rst#ffsim.simulate_trotter_diag_coulomb_split_op). As with other Trotter functions in ffsim, the `order` parameter controls the order of the Trotter-Suzuki formula: `order=0` is the first-order asymmetric formula (the default), `order=1` is the first-order symmetric (second-order) formula, and so on.\n", |
| 229 | + "\n", |
| 230 | + "In the following example, we compare the Trotter-approximated time evolution against the exact time evolution (computed using `expm_multiply`)." |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 4, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [ |
| 238 | + { |
| 239 | + "name": "stdout", |
| 240 | + "output_type": "stream", |
| 241 | + "text": [ |
| 242 | + "n_steps = 1, fidelity = 0.45702529\n", |
| 243 | + "n_steps = 2, fidelity = 0.95880093\n", |
| 244 | + "n_steps = 5, fidelity = 0.99915103\n", |
| 245 | + "n_steps = 10, fidelity = 0.99994861\n" |
| 246 | + ] |
| 247 | + } |
| 248 | + ], |
| 249 | + "source": [ |
| 250 | + "# Initial state\n", |
| 251 | + "vec = ffsim.hartree_fock_state(norb, nelec)\n", |
| 252 | + "\n", |
| 253 | + "# Evolution time\n", |
| 254 | + "time = 1.0\n", |
| 255 | + "\n", |
| 256 | + "# Compute exact time evolution\n", |
| 257 | + "linop = ffsim.linear_operator(hubbard_ham, norb=norb, nelec=nelec)\n", |
| 258 | + "trace = ffsim.trace(hubbard_ham, norb=norb, nelec=nelec)\n", |
| 259 | + "exact = scipy.sparse.linalg.expm_multiply(\n", |
| 260 | + " -1j * time * linop, vec, traceA=-1j * time * trace\n", |
| 261 | + ")\n", |
| 262 | + "\n", |
| 263 | + "# Compute Trotter-approximated time evolution with increasing number of steps\n", |
| 264 | + "for n_steps in [1, 2, 5, 10]:\n", |
| 265 | + " result = ffsim.simulate_trotter_diag_coulomb_split_op(\n", |
| 266 | + " vec,\n", |
| 267 | + " hubbard_ham,\n", |
| 268 | + " time,\n", |
| 269 | + " norb=norb,\n", |
| 270 | + " nelec=nelec,\n", |
| 271 | + " n_steps=n_steps,\n", |
| 272 | + " order=1,\n", |
| 273 | + " )\n", |
| 274 | + " fidelity = abs(np.vdot(result, exact))\n", |
| 275 | + " print(f\"n_steps = {n_steps:2d}, fidelity = {fidelity:.8f}\")" |
| 276 | + ] |
| 277 | + }, |
| 278 | + { |
| 279 | + "cell_type": "markdown", |
| 280 | + "metadata": {}, |
| 281 | + "source": [ |
| 282 | + "As expected, the fidelity increases with the number of Trotter steps." |
| 283 | + ] |
| 284 | + } |
| 285 | + ], |
| 286 | + "metadata": { |
| 287 | + "kernelspec": { |
| 288 | + "display_name": ".venv", |
| 289 | + "language": "python", |
| 290 | + "name": "python3" |
| 291 | + }, |
| 292 | + "language_info": { |
| 293 | + "codemirror_mode": { |
| 294 | + "name": "ipython", |
| 295 | + "version": 3 |
| 296 | + }, |
| 297 | + "file_extension": ".py", |
| 298 | + "mimetype": "text/x-python", |
| 299 | + "name": "python", |
| 300 | + "nbconvert_exporter": "python", |
| 301 | + "pygments_lexer": "ipython3", |
| 302 | + "version": "3.12.11" |
| 303 | + } |
| 304 | + }, |
| 305 | + "nbformat": 4, |
| 306 | + "nbformat_minor": 2 |
| 307 | +} |
0 commit comments