|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "slideshow": { |
| 7 | + "slide_type": "slide" |
| 8 | + } |
| 9 | + }, |
| 10 | + "source": [ |
| 11 | + "# Coin toss quantum circuit\n", |
| 12 | + "In this exercise we create a quantum circuit that simulates the probabilistic nature of a single qubit in superposition. The one qubit circuit initializes the qubit in the ground state $|0\\rangle$ and then uses a Hadamard gate to put the qubit in superposition $|\\psi\\rangle = \\left(|0\\rangle+|1\\rangle\\right)/\\sqrt{2}.$ \n", |
| 13 | + "Measuring the qubit causes it to collapse into one of the states $|0\\rangle$ or $|1\\rangle$ with a 50% probability, i.e. a coin toss. \n", |
| 14 | + "In this exercise we introduce the Hadamard gate, which puts a qubit in superposition.\n", |
| 15 | + "```\n", |
| 16 | + " ┌───┐ \n", |
| 17 | + "q_0: |0>┤ H ├ \n", |
| 18 | + " └───┘ \n", |
| 19 | + "```\n", |
| 20 | + "\n", |
| 21 | + "We also introduce the X gate that flips the qubit from $|0\\rangle$ to $|1\\rangle$ and vice versa.\n", |
| 22 | + "```\n", |
| 23 | + " ┌───┐\n", |
| 24 | + "q_0: |0>┤ X ├\n", |
| 25 | + " └───┘\n", |
| 26 | + "```" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "metadata": { |
| 32 | + "slideshow": { |
| 33 | + "slide_type": "slide" |
| 34 | + } |
| 35 | + }, |
| 36 | + "source": [ |
| 37 | + "Import the required libraries." |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "metadata": { |
| 44 | + "slideshow": { |
| 45 | + "slide_type": "fragment" |
| 46 | + } |
| 47 | + }, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "from qiskit import QuantumCircuit, execute, Aer\n", |
| 51 | + "\n", |
| 52 | + "# Import Blochsphere visualization\n", |
| 53 | + "from qiskit.visualization import plot_bloch_multivector, plot_histogram" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": { |
| 59 | + "slideshow": { |
| 60 | + "slide_type": "slide" |
| 61 | + } |
| 62 | + }, |
| 63 | + "source": [ |
| 64 | + "As we will be using the Bloch sphere visualization (`plot_bloch_multivector`) a bit, here's a quick function that calculates the state vector ($|\\psi\\rangle$) for the circuit to let you display the Bloch vector for any given state.\n" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": null, |
| 70 | + "metadata": { |
| 71 | + "slideshow": { |
| 72 | + "slide_type": "fragment" |
| 73 | + } |
| 74 | + }, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "def get_psi(circuit): \n", |
| 78 | + " global psi\n", |
| 79 | + " backend = Aer.get_backend('statevector_simulator') \n", |
| 80 | + " psi = execute(circuit, backend).result().get_statevector(circuit)" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "metadata": { |
| 86 | + "slideshow": { |
| 87 | + "slide_type": "slide" |
| 88 | + } |
| 89 | + }, |
| 90 | + "source": [ |
| 91 | + "Create an empty quantum circuit. We start out with the qubit in the $|0\\rangle$ state." |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "metadata": { |
| 98 | + "slideshow": { |
| 99 | + "slide_type": "fragment" |
| 100 | + } |
| 101 | + }, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "qc = QuantumCircuit(1,1)\n", |
| 105 | + "\n", |
| 106 | + "# Print out the circuit\n", |
| 107 | + "print(qc)\n", |
| 108 | + "\n", |
| 109 | + "# Display the Bloch sphere\n", |
| 110 | + "get_psi(qc)\n", |
| 111 | + "plot_bloch_multivector(psi)" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "metadata": { |
| 117 | + "slideshow": { |
| 118 | + "slide_type": "slide" |
| 119 | + } |
| 120 | + }, |
| 121 | + "source": [ |
| 122 | + "Add a Hadamard (super position) gate to the quantum circuit. This puts the qubit in a superposition: $|\\psi\\rangle = \\left(|0\\rangle+|1\\rangle\\right)/\\sqrt{2}.$" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": { |
| 129 | + "slideshow": { |
| 130 | + "slide_type": "fragment" |
| 131 | + } |
| 132 | + }, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "qc.h(0)\n", |
| 136 | + "\n", |
| 137 | + "# Print out the circuit\n", |
| 138 | + "print(qc)\n", |
| 139 | + "\n", |
| 140 | + "# Display the Bloch sphere\n", |
| 141 | + "get_psi(qc)\n", |
| 142 | + "plot_bloch_multivector(psi)\n" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": { |
| 148 | + "slideshow": { |
| 149 | + "slide_type": "slide" |
| 150 | + } |
| 151 | + }, |
| 152 | + "source": [ |
| 153 | + "Finally, add a measurement gate to complete the circuit." |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": null, |
| 159 | + "metadata": { |
| 160 | + "slideshow": { |
| 161 | + "slide_type": "fragment" |
| 162 | + } |
| 163 | + }, |
| 164 | + "outputs": [], |
| 165 | + "source": [ |
| 166 | + "# Add measure gate\n", |
| 167 | + "qc.measure(0,0)\n", |
| 168 | + "print(qc)" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "markdown", |
| 173 | + "metadata": { |
| 174 | + "slideshow": { |
| 175 | + "slide_type": "slide" |
| 176 | + } |
| 177 | + }, |
| 178 | + "source": [ |
| 179 | + "Set the backend to a local simulator." |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": null, |
| 185 | + "metadata": { |
| 186 | + "slideshow": { |
| 187 | + "slide_type": "fragment" |
| 188 | + } |
| 189 | + }, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "backend = Aer.get_backend('qasm_simulator')" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "markdown", |
| 197 | + "metadata": { |
| 198 | + "slideshow": { |
| 199 | + "slide_type": "slide" |
| 200 | + } |
| 201 | + }, |
| 202 | + "source": [ |
| 203 | + "Create a quantum job that runs just one shot to simulate a coin toss. Then run the job and display the result; either 0 for up (base) or 1 for down (excited). Display the result as a histogram." |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "metadata": { |
| 210 | + "slideshow": { |
| 211 | + "slide_type": "fragment" |
| 212 | + } |
| 213 | + }, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "job = execute(qc, backend, shots=1)\n", |
| 217 | + "counts = job.result().get_counts()\n", |
| 218 | + "print(counts)\n", |
| 219 | + "plot_histogram(counts)" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "markdown", |
| 224 | + "metadata": { |
| 225 | + "slideshow": { |
| 226 | + "slide_type": "slide" |
| 227 | + } |
| 228 | + }, |
| 229 | + "source": [ |
| 230 | + "Now, lets run a thousand coin tosses in a row and see what we get." |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": null, |
| 236 | + "metadata": { |
| 237 | + "slideshow": { |
| 238 | + "slide_type": "fragment" |
| 239 | + } |
| 240 | + }, |
| 241 | + "outputs": [], |
| 242 | + "source": [ |
| 243 | + "job = execute(qc, backend, shots=1000)\n", |
| 244 | + "counts = job.result().get_counts()\n", |
| 245 | + "print(counts)\n", |
| 246 | + "plot_histogram(counts)" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "markdown", |
| 251 | + "metadata": { |
| 252 | + "slideshow": { |
| 253 | + "slide_type": "fragment" |
| 254 | + } |
| 255 | + }, |
| 256 | + "source": [ |
| 257 | + "In the histogram we see that we get 0 and 1 with ~50% probability. Which is what we expect from tossing some coins." |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "markdown", |
| 262 | + "metadata": { |
| 263 | + "slideshow": { |
| 264 | + "slide_type": "slide" |
| 265 | + } |
| 266 | + }, |
| 267 | + "source": [ |
| 268 | + "We can also do our coin flip with the qubit starting in the $|1\\rangle$ state by first flipping the qubit by using the X gate. The Hadamard gate still flips the qubit to the equator, but now on the -X side." |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": { |
| 275 | + "slideshow": { |
| 276 | + "slide_type": "fragment" |
| 277 | + } |
| 278 | + }, |
| 279 | + "outputs": [], |
| 280 | + "source": [ |
| 281 | + "qc2 = QuantumCircuit(1,1)\n", |
| 282 | + "qc2.x(0)\n", |
| 283 | + "qc2.h(0)\n", |
| 284 | + "print(qc2)\n", |
| 285 | + "# Display the Bloch sphere\n", |
| 286 | + "get_psi(qc2)\n", |
| 287 | + "plot_bloch_multivector(psi)" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "markdown", |
| 292 | + "metadata": { |
| 293 | + "slideshow": { |
| 294 | + "slide_type": "slide" |
| 295 | + } |
| 296 | + }, |
| 297 | + "source": [ |
| 298 | + "Add the measure gate and run the circuit 1,000 times." |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": null, |
| 304 | + "metadata": { |
| 305 | + "slideshow": { |
| 306 | + "slide_type": "fragment" |
| 307 | + } |
| 308 | + }, |
| 309 | + "outputs": [], |
| 310 | + "source": [ |
| 311 | + "qc2.measure(0,0)\n", |
| 312 | + "\n", |
| 313 | + "job2 = execute(qc2, backend, shots=1000)\n", |
| 314 | + "counts2 = job2.result().get_counts()\n", |
| 315 | + "print(counts2)\n", |
| 316 | + "plot_histogram(counts2)" |
| 317 | + ] |
| 318 | + }, |
| 319 | + { |
| 320 | + "cell_type": "markdown", |
| 321 | + "metadata": { |
| 322 | + "slideshow": { |
| 323 | + "slide_type": "fragment" |
| 324 | + } |
| 325 | + }, |
| 326 | + "source": [ |
| 327 | + "As you can see, there is no real difference in the outcome. " |
| 328 | + ] |
| 329 | + } |
| 330 | + ], |
| 331 | + "metadata": { |
| 332 | + "celltoolbar": "Slideshow", |
| 333 | + "kernelspec": { |
| 334 | + "display_name": "Python 3", |
| 335 | + "language": "python", |
| 336 | + "name": "python3" |
| 337 | + }, |
| 338 | + "language_info": { |
| 339 | + "codemirror_mode": { |
| 340 | + "name": "ipython", |
| 341 | + "version": 3 |
| 342 | + }, |
| 343 | + "file_extension": ".py", |
| 344 | + "mimetype": "text/x-python", |
| 345 | + "name": "python", |
| 346 | + "nbconvert_exporter": "python", |
| 347 | + "pygments_lexer": "ipython3", |
| 348 | + "version": "3.7.3" |
| 349 | + } |
| 350 | + }, |
| 351 | + "nbformat": 4, |
| 352 | + "nbformat_minor": 2 |
| 353 | +} |
0 commit comments