|
431 | 431 | "\n",
|
432 | 432 | "### Definition of the purity\n",
|
433 | 433 | "The purity is defined as \n",
|
434 |
| - "\\begin{equation}\n", |
| 434 | + "$$\n", |
435 | 435 | "\\mathcal{P} = {Tr}(\\rho^2)\n",
|
436 |
| - "\\end{equation}\n", |
| 436 | + "$$\n", |
437 | 437 | "where $\\rho$ can be expressed as a sum of Pauli matrices\n",
|
438 |
| - "\\begin{equation}\n", |
| 438 | + "$$\n", |
439 | 439 | "\\rho = \\sum_{i} \\alpha_i P_i\n",
|
440 |
| - "\\end{equation}\n", |
| 440 | + "$$\n", |
441 | 441 | "where $i$ is a sum over $4^n$ Paulis. Therefore,\n",
|
442 |
| - "\\begin{equation}\n", |
| 442 | + "$$\n", |
443 | 443 | "\\rho^2 = \\sum_{ij} \\alpha_i \\alpha_j P_i \\cdot P_j\n",
|
444 |
| - "\\end{equation}\n", |
| 444 | + "$$\n", |
445 | 445 | "and\n",
|
446 |
| - "\\begin{equation}\n", |
| 446 | + "$$\n", |
447 | 447 | "Tr(\\rho^2) = \\sum_{ij} \\alpha_i \\alpha_j Tr(P_i P_j)\n",
|
448 |
| - "\\end{equation}\n", |
| 448 | + "$$\n", |
449 | 449 | "If $i\\ne j$ then $P_i P_j = P_k$ (where $P_k \\ne \\mathbf{I}$ and if $i==j$ then $P_i P_j = \\mathcal{I}$). Since $Tr(P_k)=0$, then\n",
|
450 |
| - "\\begin{equation}\n", |
| 450 | + "$$\n", |
451 | 451 | "Tr(\\rho^2) = \\sum_i \\alpha_i^2 d\n",
|
452 |
| - "\\end{equation}\n", |
| 452 | + "$$\n", |
453 | 453 | "Now we can calculate any expectation value as,\n",
|
454 |
| - "\\begin{eqnarray}\n", |
| 454 | + "$$\n", |
455 | 455 | "\\langle \\hat{A} \\rangle = Tr(\\hat{A} \\rho)\n",
|
456 |
| - "\\end{eqnarray}\n", |
| 456 | + "$$\n", |
457 | 457 | "so the Pauli expectation value is\n",
|
458 |
| - "\\begin{eqnarray}\n", |
459 |
| - "\\langle P_k \\rangle & = & Tr(P_k \\rho) \\\\\n", |
460 |
| - "& = & \\sum_i \\alpha_i Tr(P_k P_i)\\\\\n", |
461 |
| - "& = & \\alpha_k d\n", |
462 |
| - "\\end{eqnarray}\n", |
| 458 | + "$$\n", |
| 459 | + "\\langle P_k \\rangle = Tr(P_k \\rho) \n", |
| 460 | + " = \\sum_i \\alpha_i Tr(P_k P_i)\n", |
| 461 | + " = \\alpha_k d\n", |
| 462 | + "$$\n", |
463 | 463 | "so\n",
|
464 |
| - "\\begin{eqnarray}\n", |
| 464 | + "$$\n", |
465 | 465 | "Tr(\\rho^2) = \\sum_k \\langle P_k \\rangle^2 /d\n",
|
466 |
| - "\\end{eqnarray}" |
| 466 | + "$$" |
467 | 467 | ]
|
468 | 468 | },
|
469 | 469 | {
|
|
473 | 473 | "### Step 1: Generating the purity RB sequences \n",
|
474 | 474 | "\n",
|
475 | 475 | "To calculate all $Z$ correlators we only need the on diagonal elements of $\\rho$ (i.e. what is measured in experiment). If we apply a $\\pi/2$ rotation to the density matrix and then measure the $Z$ correlator,\n",
|
476 |
| - "\\begin{eqnarray}\n", |
477 |
| - "\\rho^{'} & = & e^{i P_j \\pi/4} \\rho e^{-i P_j \\pi/4} \\\\\n", |
478 |
| - "Tr(Z \\rho^{'}) & = & Tr(Z e^{i P_j \\pi/4} \\rho e^{-i P_j \\pi/4}) \\\\\n", |
479 |
| - "& = & Tr(e^{-i P_j \\pi/4}Z e^{i P_j \\pi/4} \\rho)\n", |
480 |
| - "\\end{eqnarray}\n", |
| 476 | + "$$\n", |
| 477 | + "\\rho^{'} = e^{i P_j \\pi/4} \\rho e^{-i P_j \\pi/4} \\\\\n", |
| 478 | + "Tr(Z \\rho^{'}) = Tr(Z e^{i P_j \\pi/4} \\rho e^{-i P_j \\pi/4}) \n", |
| 479 | + " = Tr(e^{-i P_j \\pi/4}Z e^{i P_j \\pi/4} \\rho)\n", |
| 480 | + "$$\n", |
481 | 481 | "which looks like calculating the expectation value of the rotated Pauli. \n",
|
482 | 482 | "\n",
|
483 | 483 | "Therefore, in order to generate each of the $3^n$ circuits, we need to do (per each of the $n$ qubits) either:\n",
|
|
0 commit comments