1- from typing import Dict , Sequence
1+ from typing import Sequence , cast , Any
22
33import numpy as np
44from pandas import DataFrame
@@ -13,9 +13,9 @@ def pdf(
1313 symmetric : float | None = None ,
1414 precision : int = 6 ,
1515) -> DataFrame :
16- max_value = np .max (data )
17- min_value = np .min (data )
18- domain = max (abs (data )) if symmetric is not None else max_value - min_value
16+ max_value = cast ( float , np .max (data ) )
17+ min_value = cast ( float , np .min (data ) )
18+ domain : float = max (abs (data )) if symmetric is not None else max_value - min_value # type: ignore
1919 if num_bins is None :
2020 if not delta :
2121 num_bins = 50
@@ -39,7 +39,9 @@ def pdf(
3939 return DataFrame (dict (pdf = pdf ), index = x [1 :- 1 ])
4040
4141
42- def event_density (df : DataFrame , columns : Sequence , num : int = 10 ) -> Dict :
42+ def event_density (
43+ df : DataFrame , columns : Sequence [str ], num : int = 10
44+ ) -> dict [str , Any ]:
4345 """Calculate the probability density of the number of events
4446 in the dataframe columns
4547 """
@@ -48,5 +50,5 @@ def event_density(df: DataFrame, columns: Sequence, num: int = 10) -> Dict:
4850 for col in columns :
4951 counts , _ = np .histogram (df [col ], bins = bins )
5052 counts = counts / np .sum (counts )
51- data [col ] = counts [:num ]
53+ data [col ] = counts [:num ] # type: ignore
5254 return data
0 commit comments