|
| 1 | +--- |
| 2 | +title: "jupyter dark mode - matplotlib" |
| 3 | +engine: jupyter |
| 4 | +format: |
| 5 | + html: |
| 6 | + theme: |
| 7 | + dark: slate |
| 8 | + light: united |
| 9 | +keep-md: true |
| 10 | +_quarto: |
| 11 | + tests: |
| 12 | + html: |
| 13 | + ensureHtmlElements: |
| 14 | + - |
| 15 | + - 'body.quarto-dark' |
| 16 | + - 'div.cell div.light-content' |
| 17 | + - 'div.cell div.dark-content' |
| 18 | + - [] |
| 19 | +--- |
| 20 | + |
| 21 | +```{python} |
| 22 | +#| echo: false |
| 23 | +import yaml |
| 24 | +import tempfile |
| 25 | +import os |
| 26 | +
|
| 27 | +def apply_mpl_colors(bgcolor, fgcolor, primarycolor): |
| 28 | + fd, name = tempfile.mkstemp("mplstyle") |
| 29 | + os.close(fd) |
| 30 | + with open(name, "w") as out: |
| 31 | + out.write("axes.facecolor: \"%s\"\n" % bgcolor) |
| 32 | + out.write("axes.edgecolor: \"%s\"\n" % fgcolor) |
| 33 | + out.write("axes.labelcolor: \"%s\"\n" % fgcolor) |
| 34 | + out.write("axes.titlecolor: \"%s\"\n" % fgcolor) |
| 35 | + out.write("figure.facecolor: \"%s\"\n" % bgcolor) |
| 36 | + out.write("figure.edgecolor: \"%s\"\n" % fgcolor) |
| 37 | + out.write("text.color: \"%s\"\n" % fgcolor) |
| 38 | + out.write("xtick.color: \"%s\"\n" % fgcolor) |
| 39 | + out.write("ytick.color: \"%s\"\n" % fgcolor) |
| 40 | + # seems to require named color, is there a better way? |
| 41 | + out.write("axes.prop_cycle: cycler('color', ['%s'])" % primarycolor) |
| 42 | + plt.style.use(name) |
| 43 | + os.unlink(name) |
| 44 | +
|
| 45 | +def united_colors(): |
| 46 | + apply_mpl_colors("#ffffff", "#333333", "red") |
| 47 | +
|
| 48 | +def slate_colors(): |
| 49 | + apply_mpl_colors("#282B30", "#aaaaaa", "white") |
| 50 | +``` |
| 51 | + |
| 52 | +### No crossref or caption |
| 53 | +```{python} |
| 54 | +#| echo: false |
| 55 | +#| renderings: [light, dark] |
| 56 | +import numpy as np |
| 57 | +import matplotlib.pyplot as plt |
| 58 | +
|
| 59 | +# Parameters for the normal distribution |
| 60 | +mean = 0 |
| 61 | +std_dev = 1 |
| 62 | +
|
| 63 | +# Generate data |
| 64 | +x = np.linspace(mean - 4*std_dev, mean + 4*std_dev, 1000) |
| 65 | +y = (1/(std_dev * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mean) / std_dev)**2) |
| 66 | +
|
| 67 | +# Plotting |
| 68 | +united_colors() |
| 69 | +plt.figure(figsize=(8, 5)) |
| 70 | +plt.plot(x, y, label='Normal Distribution') |
| 71 | +plt.title('Normal Distribution Curve') |
| 72 | +plt.xlabel('X-axis') |
| 73 | +plt.ylabel('Probability Density') |
| 74 | +plt.legend() |
| 75 | +plt.grid(True) |
| 76 | +plt.show() |
| 77 | +
|
| 78 | +slate_colors() |
| 79 | +plt.figure(figsize=(8, 5)) |
| 80 | +plt.plot(x, y, label='Normal Distribution') |
| 81 | +plt.title('Normal Distribution Curve') |
| 82 | +plt.xlabel('X-axis') |
| 83 | +plt.ylabel('Probability Density') |
| 84 | +plt.legend() |
| 85 | +plt.grid(True) |
| 86 | +plt.show() |
| 87 | +``` |
| 88 | + |
| 89 | +### With crossref but no caption |
| 90 | + |
| 91 | +::: {#fig-matplotlib-line} |
| 92 | +```{python} |
| 93 | +#| echo: false |
| 94 | +#| renderings: [light, dark] |
| 95 | +import matplotlib.pyplot as plt |
| 96 | +
|
| 97 | +united_colors() |
| 98 | +plt.title("Hello") |
| 99 | +plt.plot([1,2,3]) |
| 100 | +plt.grid(True) |
| 101 | +plt.show(block=False) |
| 102 | +
|
| 103 | +slate_colors() |
| 104 | +plt.figure() |
| 105 | +plt.title("Hello") |
| 106 | +plt.plot([1,2,3]) |
| 107 | +plt.grid(True) |
| 108 | +plt.show(block=False) |
| 109 | +``` |
| 110 | +::: |
| 111 | + |
| 112 | +### With caption but no crossref |
| 113 | + |
| 114 | +::: {} |
| 115 | +```{python} |
| 116 | +#| echo: false |
| 117 | +#| renderings: [light, dark] |
| 118 | +
|
| 119 | +# author: "anthropic claude-3-5-sonnet-20240620" |
| 120 | +import numpy as np |
| 121 | +import matplotlib.pyplot as plt |
| 122 | +
|
| 123 | +# Generate data points |
| 124 | +x = np.linspace(0, 2 * np.pi, 100) |
| 125 | +y = np.sin(x) |
| 126 | +
|
| 127 | +united_colors() |
| 128 | +plt.figure(figsize=(10, 6)) |
| 129 | +plt.plot(x, y) |
| 130 | +plt.title('Sine Wave') |
| 131 | +plt.xlabel('x') |
| 132 | +plt.ylabel('sin(x)') |
| 133 | +plt.grid(True) |
| 134 | +plt.axhline(y=0, color='k', linestyle='--') |
| 135 | +plt.axvline(x=0, color='k', linestyle='--') |
| 136 | +plt.show() |
| 137 | +
|
| 138 | +slate_colors() |
| 139 | +plt.figure(figsize=(10, 6)) |
| 140 | +plt.plot(x, y) |
| 141 | +plt.title('Sine Wave') |
| 142 | +plt.xlabel('x') |
| 143 | +plt.ylabel('sin(x)') |
| 144 | +plt.grid(True) |
| 145 | +plt.axhline(y=0, color='k', linestyle='--') |
| 146 | +plt.axvline(x=0, color='k', linestyle='--') |
| 147 | +plt.show() |
| 148 | +``` |
| 149 | +matplotlib sine wave |
| 150 | + |
| 151 | +::: |
| 152 | + |
| 153 | +### With crossref and caption |
| 154 | + |
| 155 | +::: {#fig-matplotlib-cosine} |
| 156 | +```{python} |
| 157 | +#| echo: false |
| 158 | +#| renderings: [dark, light] |
| 159 | +import numpy as np |
| 160 | +import matplotlib.pyplot as plt |
| 161 | +
|
| 162 | +# Generate data points |
| 163 | +x = np.linspace(0, 2 * np.pi, 100) |
| 164 | +y = np.cos(x) |
| 165 | +
|
| 166 | +# Create the plot |
| 167 | +slate_colors() |
| 168 | +plt.figure(figsize=(10, 6)) |
| 169 | +plt.plot(x, y) |
| 170 | +plt.title('Cosine Wave') |
| 171 | +plt.xlabel('x') |
| 172 | +plt.ylabel('cos(x)') |
| 173 | +plt.grid(True) |
| 174 | +plt.axhline(y=0, color='k', linestyle='--') |
| 175 | +plt.axvline(x=0, color='k', linestyle='--') |
| 176 | +plt.show() |
| 177 | +
|
| 178 | +united_colors() |
| 179 | +plt.figure(figsize=(10, 6)) |
| 180 | +plt.plot(x, y) |
| 181 | +plt.title('Cosine Wave') |
| 182 | +plt.xlabel('x') |
| 183 | +plt.ylabel('cos(x)') |
| 184 | +plt.grid(True) |
| 185 | +plt.axhline(y=0, color='k', linestyle='--') |
| 186 | +plt.axvline(x=0, color='k', linestyle='--') |
| 187 | +plt.show() |
| 188 | +``` |
| 189 | + |
| 190 | +matplotlib cosine wave |
| 191 | +::: |
| 192 | + |
| 193 | +Here's a [link](https://example.com). |
| 194 | + |
| 195 | + |
| 196 | +{{< lipsum 3 >}} |
0 commit comments