Skip to content

Commit 3fa8c4d

Browse files
committed
Remove unnecessary code
1 parent 3ce8f22 commit 3fa8c4d

File tree

6 files changed

+0
-432
lines changed

6 files changed

+0
-432
lines changed

segmentation_models_pytorch/encoders/_dpn.py

Lines changed: 0 additions & 168 deletions
Original file line numberDiff line numberDiff line change
@@ -11,176 +11,8 @@
1111
import torch
1212
import torch.nn as nn
1313
import torch.nn.functional as F
14-
import torch.utils.model_zoo as model_zoo
1514
from collections import OrderedDict
1615

17-
__all__ = ["DPN", "dpn68", "dpn68b", "dpn92", "dpn98", "dpn131", "dpn107"]
18-
19-
20-
def dpn68(num_classes=1000, pretrained="imagenet"):
21-
model = DPN(
22-
small=True,
23-
num_init_features=10,
24-
k_r=128,
25-
groups=32,
26-
k_sec=(3, 4, 12, 3),
27-
inc_sec=(16, 32, 32, 64),
28-
num_classes=num_classes,
29-
test_time_pool=True,
30-
)
31-
if pretrained:
32-
settings = pretrained_settings["dpn68"][pretrained]
33-
assert num_classes == settings["num_classes"], (
34-
"num_classes should be {}, but is {}".format(
35-
settings["num_classes"], num_classes
36-
)
37-
)
38-
39-
model.load_state_dict(model_zoo.load_url(settings["url"]))
40-
model.input_space = settings["input_space"]
41-
model.input_size = settings["input_size"]
42-
model.input_range = settings["input_range"]
43-
model.mean = settings["mean"]
44-
model.std = settings["std"]
45-
return model
46-
47-
48-
def dpn68b(num_classes=1000, pretrained="imagenet+5k"):
49-
model = DPN(
50-
small=True,
51-
num_init_features=10,
52-
k_r=128,
53-
groups=32,
54-
b=True,
55-
k_sec=(3, 4, 12, 3),
56-
inc_sec=(16, 32, 32, 64),
57-
num_classes=num_classes,
58-
test_time_pool=True,
59-
)
60-
if pretrained:
61-
settings = pretrained_settings["dpn68b"][pretrained]
62-
assert num_classes == settings["num_classes"], (
63-
"num_classes should be {}, but is {}".format(
64-
settings["num_classes"], num_classes
65-
)
66-
)
67-
68-
model.load_state_dict(model_zoo.load_url(settings["url"]))
69-
model.input_space = settings["input_space"]
70-
model.input_size = settings["input_size"]
71-
model.input_range = settings["input_range"]
72-
model.mean = settings["mean"]
73-
model.std = settings["std"]
74-
return model
75-
76-
77-
def dpn92(num_classes=1000, pretrained="imagenet+5k"):
78-
model = DPN(
79-
num_init_features=64,
80-
k_r=96,
81-
groups=32,
82-
k_sec=(3, 4, 20, 3),
83-
inc_sec=(16, 32, 24, 128),
84-
num_classes=num_classes,
85-
test_time_pool=True,
86-
)
87-
if pretrained:
88-
settings = pretrained_settings["dpn92"][pretrained]
89-
assert num_classes == settings["num_classes"], (
90-
"num_classes should be {}, but is {}".format(
91-
settings["num_classes"], num_classes
92-
)
93-
)
94-
95-
model.load_state_dict(model_zoo.load_url(settings["url"]))
96-
model.input_space = settings["input_space"]
97-
model.input_size = settings["input_size"]
98-
model.input_range = settings["input_range"]
99-
model.mean = settings["mean"]
100-
model.std = settings["std"]
101-
return model
102-
103-
104-
def dpn98(num_classes=1000, pretrained="imagenet"):
105-
model = DPN(
106-
num_init_features=96,
107-
k_r=160,
108-
groups=40,
109-
k_sec=(3, 6, 20, 3),
110-
inc_sec=(16, 32, 32, 128),
111-
num_classes=num_classes,
112-
test_time_pool=True,
113-
)
114-
if pretrained:
115-
settings = pretrained_settings["dpn98"][pretrained]
116-
assert num_classes == settings["num_classes"], (
117-
"num_classes should be {}, but is {}".format(
118-
settings["num_classes"], num_classes
119-
)
120-
)
121-
122-
model.load_state_dict(model_zoo.load_url(settings["url"]))
123-
model.input_space = settings["input_space"]
124-
model.input_size = settings["input_size"]
125-
model.input_range = settings["input_range"]
126-
model.mean = settings["mean"]
127-
model.std = settings["std"]
128-
return model
129-
130-
131-
def dpn131(num_classes=1000, pretrained="imagenet"):
132-
model = DPN(
133-
num_init_features=128,
134-
k_r=160,
135-
groups=40,
136-
k_sec=(4, 8, 28, 3),
137-
inc_sec=(16, 32, 32, 128),
138-
num_classes=num_classes,
139-
test_time_pool=True,
140-
)
141-
if pretrained:
142-
settings = pretrained_settings["dpn131"][pretrained]
143-
assert num_classes == settings["num_classes"], (
144-
"num_classes should be {}, but is {}".format(
145-
settings["num_classes"], num_classes
146-
)
147-
)
148-
149-
model.load_state_dict(model_zoo.load_url(settings["url"]))
150-
model.input_space = settings["input_space"]
151-
model.input_size = settings["input_size"]
152-
model.input_range = settings["input_range"]
153-
model.mean = settings["mean"]
154-
model.std = settings["std"]
155-
return model
156-
157-
158-
def dpn107(num_classes=1000, pretrained="imagenet+5k"):
159-
model = DPN(
160-
num_init_features=128,
161-
k_r=200,
162-
groups=50,
163-
k_sec=(4, 8, 20, 3),
164-
inc_sec=(20, 64, 64, 128),
165-
num_classes=num_classes,
166-
test_time_pool=True,
167-
)
168-
if pretrained:
169-
settings = pretrained_settings["dpn107"][pretrained]
170-
assert num_classes == settings["num_classes"], (
171-
"num_classes should be {}, but is {}".format(
172-
settings["num_classes"], num_classes
173-
)
174-
)
175-
176-
model.load_state_dict(model_zoo.load_url(settings["url"]))
177-
model.input_space = settings["input_space"]
178-
model.input_size = settings["input_size"]
179-
model.input_range = settings["input_range"]
180-
model.mean = settings["mean"]
181-
model.std = settings["std"]
182-
return model
183-
18416

18517
class CatBnAct(nn.Module):
18618
def __init__(self, in_chs, activation_fn=nn.ReLU(inplace=True)):

segmentation_models_pytorch/encoders/_efficientnet.py

Lines changed: 0 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -716,7 +716,6 @@ def forward(self, x):
716716
# efficientnet_params: A function to query compound coefficient
717717
# get_model_params and efficientnet:
718718
# Functions to get BlockArgs and GlobalParams for efficientnet
719-
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
720719

721720

722721
class BlockDecoder(object):
@@ -882,31 +881,3 @@ def get_model_params(model_name, override_params):
882881
# ValueError will be raised here if override_params has fields not included in global_params.
883882
global_params = global_params._replace(**override_params)
884883
return blocks_args, global_params
885-
886-
887-
# train with Standard methods
888-
# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks)
889-
url_map = {
890-
"efficientnet-b0": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth",
891-
"efficientnet-b1": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth",
892-
"efficientnet-b2": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth",
893-
"efficientnet-b3": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth",
894-
"efficientnet-b4": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth",
895-
"efficientnet-b5": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth",
896-
"efficientnet-b6": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth",
897-
"efficientnet-b7": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth",
898-
}
899-
900-
# train with Adversarial Examples(AdvProp)
901-
# check more details in paper(Adversarial Examples Improve Image Recognition)
902-
url_map_advprop = {
903-
"efficientnet-b0": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth",
904-
"efficientnet-b1": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth",
905-
"efficientnet-b2": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth",
906-
"efficientnet-b3": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth",
907-
"efficientnet-b4": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth",
908-
"efficientnet-b5": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth",
909-
"efficientnet-b6": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth",
910-
"efficientnet-b7": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth",
911-
"efficientnet-b8": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth",
912-
}

segmentation_models_pytorch/encoders/_inceptionresnetv2.py

Lines changed: 0 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,5 @@
1-
from __future__ import print_function, division, absolute_import
21
import torch
32
import torch.nn as nn
4-
import torch.utils.model_zoo as model_zoo
5-
6-
__all__ = ["InceptionResNetV2", "inceptionresnetv2"]
73

84

95
class BasicConv2d(nn.Module):
@@ -303,36 +299,3 @@ def forward(self, input):
303299
x = self.features(input)
304300
x = self.logits(x)
305301
return x
306-
307-
308-
def inceptionresnetv2(num_classes=1000, pretrained="imagenet"):
309-
r"""InceptionResNetV2 model architecture from the
310-
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
311-
"""
312-
if pretrained:
313-
settings = pretrained_settings["inceptionresnetv2"][pretrained]
314-
assert num_classes == settings["num_classes"], (
315-
"num_classes should be {}, but is {}".format(
316-
settings["num_classes"], num_classes
317-
)
318-
)
319-
320-
# both 'imagenet'&'imagenet+background' are loaded from same parameters
321-
model = InceptionResNetV2(num_classes=1001)
322-
model.load_state_dict(model_zoo.load_url(settings["url"]))
323-
324-
if pretrained == "imagenet":
325-
new_last_linear = nn.Linear(1536, 1000)
326-
new_last_linear.weight.data = model.last_linear.weight.data[1:]
327-
new_last_linear.bias.data = model.last_linear.bias.data[1:]
328-
model.last_linear = new_last_linear
329-
330-
model.input_space = settings["input_space"]
331-
model.input_size = settings["input_size"]
332-
model.input_range = settings["input_range"]
333-
334-
model.mean = settings["mean"]
335-
model.std = settings["std"]
336-
else:
337-
model = InceptionResNetV2(num_classes=num_classes)
338-
return model

segmentation_models_pytorch/encoders/_inceptionv4.py

Lines changed: 0 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,6 @@
1-
from __future__ import print_function, division, absolute_import
21
import torch
32
import torch.nn as nn
43
import torch.nn.functional as F
5-
import torch.utils.model_zoo as model_zoo
6-
7-
__all__ = ["InceptionV4", "inceptionv4"]
84

95

106
class BasicConv2d(nn.Module):
@@ -293,32 +289,3 @@ def forward(self, input):
293289
x = self.features(input)
294290
x = self.logits(x)
295291
return x
296-
297-
298-
def inceptionv4(num_classes=1000, pretrained="imagenet"):
299-
if pretrained:
300-
settings = pretrained_settings["inceptionv4"][pretrained]
301-
assert num_classes == settings["num_classes"], (
302-
"num_classes should be {}, but is {}".format(
303-
settings["num_classes"], num_classes
304-
)
305-
)
306-
307-
# both 'imagenet'&'imagenet+background' are loaded from same parameters
308-
model = InceptionV4(num_classes=1001)
309-
model.load_state_dict(model_zoo.load_url(settings["url"]))
310-
311-
if pretrained == "imagenet":
312-
new_last_linear = nn.Linear(1536, 1000)
313-
new_last_linear.weight.data = model.last_linear.weight.data[1:]
314-
new_last_linear.bias.data = model.last_linear.bias.data[1:]
315-
model.last_linear = new_last_linear
316-
317-
model.input_space = settings["input_space"]
318-
model.input_size = settings["input_size"]
319-
model.input_range = settings["input_range"]
320-
model.mean = settings["mean"]
321-
model.std = settings["std"]
322-
else:
323-
model = InceptionV4(num_classes=num_classes)
324-
return model

0 commit comments

Comments
 (0)