@@ -9,7 +9,7 @@ however, not all models are supported
99
1010Below is a table of suitable encoders (for DeepLabV3, DeepLabV3+, and PAN dilation support is needed also)
1111
12- Total number of encoders: 792 (579+213 )
12+ Total number of encoders: 812 (593+219 )
1313
1414.. note ::
1515
@@ -99,6 +99,8 @@ These models typically produce feature maps at the following downsampling scales
9999+----------------------------------+------------------+
100100| cs3sedarknet_xdw | ✅ |
101101+----------------------------------+------------------+
102+ | cspdarknet53 | ✅ |
103+ +----------------------------------+------------------+
102104| cspresnet50 | ✅ |
103105+----------------------------------+------------------+
104106| cspresnet50d | ✅ |
@@ -107,6 +109,14 @@ These models typically produce feature maps at the following downsampling scales
107109+----------------------------------+------------------+
108110| cspresnext50 | ✅ |
109111+----------------------------------+------------------+
112+ | darknet17 | ✅ |
113+ +----------------------------------+------------------+
114+ | darknet21 | ✅ |
115+ +----------------------------------+------------------+
116+ | darknet53 | ✅ |
117+ +----------------------------------+------------------+
118+ | darknetaa53 | ✅ |
119+ +----------------------------------+------------------+
110120| densenet121 | |
111121+----------------------------------+------------------+
112122| densenet161 | |
@@ -189,14 +199,6 @@ These models typically produce feature maps at the following downsampling scales
189199+----------------------------------+------------------+
190200| eca_vovnet39b | |
191201+----------------------------------+------------------+
192- | ecaresnet101d | ✅ |
193- +----------------------------------+------------------+
194- | ecaresnet101d_pruned | ✅ |
195- +----------------------------------+------------------+
196- | ecaresnet200d | ✅ |
197- +----------------------------------+------------------+
198- | ecaresnet269d | ✅ |
199- +----------------------------------+------------------+
200202| ecaresnet26t | ✅ |
201203+----------------------------------+------------------+
202204| ecaresnet50d | ✅ |
@@ -205,6 +207,14 @@ These models typically produce feature maps at the following downsampling scales
205207+----------------------------------+------------------+
206208| ecaresnet50t | ✅ |
207209+----------------------------------+------------------+
210+ | ecaresnet101d | ✅ |
211+ +----------------------------------+------------------+
212+ | ecaresnet101d_pruned | ✅ |
213+ +----------------------------------+------------------+
214+ | ecaresnet200d | ✅ |
215+ +----------------------------------+------------------+
216+ | ecaresnet269d | ✅ |
217+ +----------------------------------+------------------+
208218| ecaresnetlight | ✅ |
209219+----------------------------------+------------------+
210220| ecaresnext26t_32x4d | ✅ |
@@ -213,10 +223,10 @@ These models typically produce feature maps at the following downsampling scales
213223+----------------------------------+------------------+
214224| efficientnet_b0 | ✅ |
215225+----------------------------------+------------------+
216- | efficientnet_b0_g16_evos | ✅ |
217- +----------------------------------+------------------+
218226| efficientnet_b0_g8_gn | ✅ |
219227+----------------------------------+------------------+
228+ | efficientnet_b0_g16_evos | ✅ |
229+ +----------------------------------+------------------+
220230| efficientnet_b0_gn | ✅ |
221231+----------------------------------+------------------+
222232| efficientnet_b1 | ✅ |
@@ -333,12 +343,12 @@ These models typically produce feature maps at the following downsampling scales
333343+----------------------------------+------------------+
334344| ghostnet_130 | |
335345+----------------------------------+------------------+
336- | ghostnetv2_050 | |
337- +----------------------------------+------------------+
338346| ghostnetv2_100 | |
339347+----------------------------------+------------------+
340348| ghostnetv2_130 | |
341349+----------------------------------+------------------+
350+ | ghostnetv2_160 | |
351+ +----------------------------------+------------------+
342352| halo2botnet50ts_256 | ✅ |
343353+----------------------------------+------------------+
344354| halonet26t | ✅ |
@@ -711,14 +721,14 @@ These models typically produce feature maps at the following downsampling scales
711721+----------------------------------+------------------+
712722| regnety_160 | ✅ |
713723+----------------------------------+------------------+
714- | regnety_1280 | ✅ |
715- +----------------------------------+------------------+
716- | regnety_2560 | ✅ |
717- +----------------------------------+------------------+
718724| regnety_320 | ✅ |
719725+----------------------------------+------------------+
720726| regnety_640 | ✅ |
721727+----------------------------------+------------------+
728+ | regnety_1280 | ✅ |
729+ +----------------------------------+------------------+
730+ | regnety_2560 | ✅ |
731+ +----------------------------------+------------------+
722732| regnetz_005 | ✅ |
723733+----------------------------------+------------------+
724734| regnetz_040 | ✅ |
@@ -733,12 +743,12 @@ These models typically produce feature maps at the following downsampling scales
733743+----------------------------------+------------------+
734744| regnetz_c16_evos | ✅ |
735745+----------------------------------+------------------+
736- | regnetz_d32 | ✅ |
737- +----------------------------------+------------------+
738746| regnetz_d8 | ✅ |
739747+----------------------------------+------------------+
740748| regnetz_d8_evos | ✅ |
741749+----------------------------------+------------------+
750+ | regnetz_d32 | ✅ |
751+ +----------------------------------+------------------+
742752| regnetz_e8 | ✅ |
743753+----------------------------------+------------------+
744754| repghostnet_050 | |
@@ -837,12 +847,12 @@ These models typically produce feature maps at the following downsampling scales
837847+----------------------------------+------------------+
838848| resnet50 | ✅ |
839849+----------------------------------+------------------+
840- | resnet50_gn | ✅ |
841- +----------------------------------+------------------+
842850| resnet50_clip | ✅ |
843851+----------------------------------+------------------+
844852| resnet50_clip_gap | ✅ |
845853+----------------------------------+------------------+
854+ | resnet50_gn | ✅ |
855+ +----------------------------------+------------------+
846856| resnet50_mlp | ✅ |
847857+----------------------------------+------------------+
848858| resnet50c | ✅ |
@@ -1001,6 +1011,8 @@ These models typically produce feature maps at the following downsampling scales
10011011+----------------------------------+------------------+
10021012| sebotnet33ts_256 | ✅ |
10031013+----------------------------------+------------------+
1014+ | sedarknet21 | ✅ |
1015+ +----------------------------------+------------------+
10041016| sehalonet33ts | ✅ |
10051017+----------------------------------+------------------+
10061018| selecsls42 | |
@@ -1045,14 +1057,6 @@ These models typically produce feature maps at the following downsampling scales
10451057+----------------------------------+------------------+
10461058| seresnetaa50d | ✅ |
10471059+----------------------------------+------------------+
1048- | seresnext101_32x4d | ✅ |
1049- +----------------------------------+------------------+
1050- | seresnext101_32x8d | ✅ |
1051- +----------------------------------+------------------+
1052- | seresnext101_64x4d | ✅ |
1053- +----------------------------------+------------------+
1054- | seresnext101d_32x8d | ✅ |
1055- +----------------------------------+------------------+
10561060| seresnext26d_32x4d | ✅ |
10571061+----------------------------------+------------------+
10581062| seresnext26t_32x4d | ✅ |
@@ -1061,6 +1065,14 @@ These models typically produce feature maps at the following downsampling scales
10611065+----------------------------------+------------------+
10621066| seresnext50_32x4d | ✅ |
10631067+----------------------------------+------------------+
1068+ | seresnext101_32x4d | ✅ |
1069+ +----------------------------------+------------------+
1070+ | seresnext101_32x8d | ✅ |
1071+ +----------------------------------+------------------+
1072+ | seresnext101_64x4d | ✅ |
1073+ +----------------------------------+------------------+
1074+ | seresnext101d_32x8d | ✅ |
1075+ +----------------------------------+------------------+
10641076| seresnextaa101d_32x8d | ✅ |
10651077+----------------------------------+------------------+
10661078| seresnextaa201d_32x8d | ✅ |
@@ -1163,6 +1175,22 @@ These models typically produce feature maps at the following downsampling scales
11631175+----------------------------------+------------------+
11641176| tinynet_e | ✅ |
11651177+----------------------------------+------------------+
1178+ | vgg11 | |
1179+ +----------------------------------+------------------+
1180+ | vgg11_bn | |
1181+ +----------------------------------+------------------+
1182+ | vgg13 | |
1183+ +----------------------------------+------------------+
1184+ | vgg13_bn | |
1185+ +----------------------------------+------------------+
1186+ | vgg16 | |
1187+ +----------------------------------+------------------+
1188+ | vgg16_bn | |
1189+ +----------------------------------+------------------+
1190+ | vgg19 | |
1191+ +----------------------------------+------------------+
1192+ | vgg19_bn | |
1193+ +----------------------------------+------------------+
11661194| vovnet39a | |
11671195+----------------------------------+------------------+
11681196| vovnet57a | |
@@ -1440,6 +1468,18 @@ Transformer-style models (e.g., Swin Transformer, ConvNeXt) typically produce fe
14401468+------------------------------------+------------------+
14411469| mvitv2_tiny | |
14421470+------------------------------------+------------------+
1471+ | nest_base | |
1472+ +------------------------------------+------------------+
1473+ | nest_base_jx | |
1474+ +------------------------------------+------------------+
1475+ | nest_small | |
1476+ +------------------------------------+------------------+
1477+ | nest_small_jx | |
1478+ +------------------------------------+------------------+
1479+ | nest_tiny | |
1480+ +------------------------------------+------------------+
1481+ | nest_tiny_jx | |
1482+ +------------------------------------+------------------+
14431483| nextvit_base | |
14441484+------------------------------------+------------------+
14451485| nextvit_large | |
0 commit comments