@@ -9,7 +9,7 @@ however, not all models are supported
9
9
10
10
Below is a table of suitable encoders (for DeepLabV3, DeepLabV3+, and PAN dilation support is needed also)
11
11
12
- Total number of encoders: 792 (579+213 )
12
+ Total number of encoders: 812 (593+219 )
13
13
14
14
.. note ::
15
15
@@ -99,6 +99,8 @@ These models typically produce feature maps at the following downsampling scales
99
99
+----------------------------------+------------------+
100
100
| cs3sedarknet_xdw | ✅ |
101
101
+----------------------------------+------------------+
102
+ | cspdarknet53 | ✅ |
103
+ +----------------------------------+------------------+
102
104
| cspresnet50 | ✅ |
103
105
+----------------------------------+------------------+
104
106
| cspresnet50d | ✅ |
@@ -107,6 +109,14 @@ These models typically produce feature maps at the following downsampling scales
107
109
+----------------------------------+------------------+
108
110
| cspresnext50 | ✅ |
109
111
+----------------------------------+------------------+
112
+ | darknet17 | ✅ |
113
+ +----------------------------------+------------------+
114
+ | darknet21 | ✅ |
115
+ +----------------------------------+------------------+
116
+ | darknet53 | ✅ |
117
+ +----------------------------------+------------------+
118
+ | darknetaa53 | ✅ |
119
+ +----------------------------------+------------------+
110
120
| densenet121 | |
111
121
+----------------------------------+------------------+
112
122
| densenet161 | |
@@ -189,14 +199,6 @@ These models typically produce feature maps at the following downsampling scales
189
199
+----------------------------------+------------------+
190
200
| eca_vovnet39b | |
191
201
+----------------------------------+------------------+
192
- | ecaresnet101d | ✅ |
193
- +----------------------------------+------------------+
194
- | ecaresnet101d_pruned | ✅ |
195
- +----------------------------------+------------------+
196
- | ecaresnet200d | ✅ |
197
- +----------------------------------+------------------+
198
- | ecaresnet269d | ✅ |
199
- +----------------------------------+------------------+
200
202
| ecaresnet26t | ✅ |
201
203
+----------------------------------+------------------+
202
204
| ecaresnet50d | ✅ |
@@ -205,6 +207,14 @@ These models typically produce feature maps at the following downsampling scales
205
207
+----------------------------------+------------------+
206
208
| ecaresnet50t | ✅ |
207
209
+----------------------------------+------------------+
210
+ | ecaresnet101d | ✅ |
211
+ +----------------------------------+------------------+
212
+ | ecaresnet101d_pruned | ✅ |
213
+ +----------------------------------+------------------+
214
+ | ecaresnet200d | ✅ |
215
+ +----------------------------------+------------------+
216
+ | ecaresnet269d | ✅ |
217
+ +----------------------------------+------------------+
208
218
| ecaresnetlight | ✅ |
209
219
+----------------------------------+------------------+
210
220
| ecaresnext26t_32x4d | ✅ |
@@ -213,10 +223,10 @@ These models typically produce feature maps at the following downsampling scales
213
223
+----------------------------------+------------------+
214
224
| efficientnet_b0 | ✅ |
215
225
+----------------------------------+------------------+
216
- | efficientnet_b0_g16_evos | ✅ |
217
- +----------------------------------+------------------+
218
226
| efficientnet_b0_g8_gn | ✅ |
219
227
+----------------------------------+------------------+
228
+ | efficientnet_b0_g16_evos | ✅ |
229
+ +----------------------------------+------------------+
220
230
| efficientnet_b0_gn | ✅ |
221
231
+----------------------------------+------------------+
222
232
| efficientnet_b1 | ✅ |
@@ -333,12 +343,12 @@ These models typically produce feature maps at the following downsampling scales
333
343
+----------------------------------+------------------+
334
344
| ghostnet_130 | |
335
345
+----------------------------------+------------------+
336
- | ghostnetv2_050 | |
337
- +----------------------------------+------------------+
338
346
| ghostnetv2_100 | |
339
347
+----------------------------------+------------------+
340
348
| ghostnetv2_130 | |
341
349
+----------------------------------+------------------+
350
+ | ghostnetv2_160 | |
351
+ +----------------------------------+------------------+
342
352
| halo2botnet50ts_256 | ✅ |
343
353
+----------------------------------+------------------+
344
354
| halonet26t | ✅ |
@@ -711,14 +721,14 @@ These models typically produce feature maps at the following downsampling scales
711
721
+----------------------------------+------------------+
712
722
| regnety_160 | ✅ |
713
723
+----------------------------------+------------------+
714
- | regnety_1280 | ✅ |
715
- +----------------------------------+------------------+
716
- | regnety_2560 | ✅ |
717
- +----------------------------------+------------------+
718
724
| regnety_320 | ✅ |
719
725
+----------------------------------+------------------+
720
726
| regnety_640 | ✅ |
721
727
+----------------------------------+------------------+
728
+ | regnety_1280 | ✅ |
729
+ +----------------------------------+------------------+
730
+ | regnety_2560 | ✅ |
731
+ +----------------------------------+------------------+
722
732
| regnetz_005 | ✅ |
723
733
+----------------------------------+------------------+
724
734
| regnetz_040 | ✅ |
@@ -733,12 +743,12 @@ These models typically produce feature maps at the following downsampling scales
733
743
+----------------------------------+------------------+
734
744
| regnetz_c16_evos | ✅ |
735
745
+----------------------------------+------------------+
736
- | regnetz_d32 | ✅ |
737
- +----------------------------------+------------------+
738
746
| regnetz_d8 | ✅ |
739
747
+----------------------------------+------------------+
740
748
| regnetz_d8_evos | ✅ |
741
749
+----------------------------------+------------------+
750
+ | regnetz_d32 | ✅ |
751
+ +----------------------------------+------------------+
742
752
| regnetz_e8 | ✅ |
743
753
+----------------------------------+------------------+
744
754
| repghostnet_050 | |
@@ -837,12 +847,12 @@ These models typically produce feature maps at the following downsampling scales
837
847
+----------------------------------+------------------+
838
848
| resnet50 | ✅ |
839
849
+----------------------------------+------------------+
840
- | resnet50_gn | ✅ |
841
- +----------------------------------+------------------+
842
850
| resnet50_clip | ✅ |
843
851
+----------------------------------+------------------+
844
852
| resnet50_clip_gap | ✅ |
845
853
+----------------------------------+------------------+
854
+ | resnet50_gn | ✅ |
855
+ +----------------------------------+------------------+
846
856
| resnet50_mlp | ✅ |
847
857
+----------------------------------+------------------+
848
858
| resnet50c | ✅ |
@@ -1001,6 +1011,8 @@ These models typically produce feature maps at the following downsampling scales
1001
1011
+----------------------------------+------------------+
1002
1012
| sebotnet33ts_256 | ✅ |
1003
1013
+----------------------------------+------------------+
1014
+ | sedarknet21 | ✅ |
1015
+ +----------------------------------+------------------+
1004
1016
| sehalonet33ts | ✅ |
1005
1017
+----------------------------------+------------------+
1006
1018
| selecsls42 | |
@@ -1045,14 +1057,6 @@ These models typically produce feature maps at the following downsampling scales
1045
1057
+----------------------------------+------------------+
1046
1058
| seresnetaa50d | ✅ |
1047
1059
+----------------------------------+------------------+
1048
- | seresnext101_32x4d | ✅ |
1049
- +----------------------------------+------------------+
1050
- | seresnext101_32x8d | ✅ |
1051
- +----------------------------------+------------------+
1052
- | seresnext101_64x4d | ✅ |
1053
- +----------------------------------+------------------+
1054
- | seresnext101d_32x8d | ✅ |
1055
- +----------------------------------+------------------+
1056
1060
| seresnext26d_32x4d | ✅ |
1057
1061
+----------------------------------+------------------+
1058
1062
| seresnext26t_32x4d | ✅ |
@@ -1061,6 +1065,14 @@ These models typically produce feature maps at the following downsampling scales
1061
1065
+----------------------------------+------------------+
1062
1066
| seresnext50_32x4d | ✅ |
1063
1067
+----------------------------------+------------------+
1068
+ | seresnext101_32x4d | ✅ |
1069
+ +----------------------------------+------------------+
1070
+ | seresnext101_32x8d | ✅ |
1071
+ +----------------------------------+------------------+
1072
+ | seresnext101_64x4d | ✅ |
1073
+ +----------------------------------+------------------+
1074
+ | seresnext101d_32x8d | ✅ |
1075
+ +----------------------------------+------------------+
1064
1076
| seresnextaa101d_32x8d | ✅ |
1065
1077
+----------------------------------+------------------+
1066
1078
| seresnextaa201d_32x8d | ✅ |
@@ -1163,6 +1175,22 @@ These models typically produce feature maps at the following downsampling scales
1163
1175
+----------------------------------+------------------+
1164
1176
| tinynet_e | ✅ |
1165
1177
+----------------------------------+------------------+
1178
+ | vgg11 | |
1179
+ +----------------------------------+------------------+
1180
+ | vgg11_bn | |
1181
+ +----------------------------------+------------------+
1182
+ | vgg13 | |
1183
+ +----------------------------------+------------------+
1184
+ | vgg13_bn | |
1185
+ +----------------------------------+------------------+
1186
+ | vgg16 | |
1187
+ +----------------------------------+------------------+
1188
+ | vgg16_bn | |
1189
+ +----------------------------------+------------------+
1190
+ | vgg19 | |
1191
+ +----------------------------------+------------------+
1192
+ | vgg19_bn | |
1193
+ +----------------------------------+------------------+
1166
1194
| vovnet39a | |
1167
1195
+----------------------------------+------------------+
1168
1196
| vovnet57a | |
@@ -1440,6 +1468,18 @@ Transformer-style models (e.g., Swin Transformer, ConvNeXt) typically produce fe
1440
1468
+------------------------------------+------------------+
1441
1469
| mvitv2_tiny | |
1442
1470
+------------------------------------+------------------+
1471
+ | nest_base | |
1472
+ +------------------------------------+------------------+
1473
+ | nest_base_jx | |
1474
+ +------------------------------------+------------------+
1475
+ | nest_small | |
1476
+ +------------------------------------+------------------+
1477
+ | nest_small_jx | |
1478
+ +------------------------------------+------------------+
1479
+ | nest_tiny | |
1480
+ +------------------------------------+------------------+
1481
+ | nest_tiny_jx | |
1482
+ +------------------------------------+------------------+
1443
1483
| nextvit_base | |
1444
1484
+------------------------------------+------------------+
1445
1485
| nextvit_large | |
0 commit comments