|
38 | 38 | @inferred steadystate(H, psi0, t_l[end], c_ops, solver = solver) |
39 | 39 | @inferred steadystate(L, psi0, t_l[end], solver = solver) |
40 | 40 |
|
41 | | - # TODO: fix the following type inference issues |
42 | | - #= solver = SteadyStateDirectSolver() |
| 41 | + solver = SteadyStateDirectSolver() |
43 | 42 | @inferred steadystate(H, c_ops, solver = solver) |
44 | 43 | @inferred steadystate(L, solver = solver) |
45 | 44 |
|
|
52 | 51 | @inferred steadystate(L, solver = solver) |
53 | 52 |
|
54 | 53 | @inferred steadystate(H, c_ops) |
55 | | - @inferred steadystate(L) =# |
| 54 | + @inferred steadystate(L) |
56 | 55 | end |
57 | 56 |
|
58 | 57 | H = a_d * a |
|
74 | 73 | @test abs(sum(sol_me.expect[1, end-100:end]) / 101 - expect(e_ops[1], ρ_ss2)) < 1e-3 |
75 | 74 |
|
76 | 75 | @testset "Type Inference (steadystate_floquet)" begin |
77 | | - # TODO: fix the following type inference issues |
78 | | - #= @inferred steadystate_floquet(H, -1im * 0.5 * H_t, 1im * 0.5 * H_t, 1, c_ops, solver = SSFloquetLinearSystem()) |
| 76 | + @inferred steadystate_floquet(H, -1im * 0.5 * H_t, 1im * 0.5 * H_t, 1, c_ops, solver = SSFloquetLinearSystem()) |
79 | 77 | @inferred steadystate_floquet( |
80 | 78 | H, |
81 | 79 | -1im * 0.5 * H_t, |
82 | 80 | 1im * 0.5 * H_t, |
83 | 81 | 1, |
84 | 82 | c_ops, |
85 | 83 | solver = SSFloquetEffectiveLiouvillian(), |
86 | | - ) =# |
| 84 | + ) |
87 | 85 | end |
88 | 86 | end |
0 commit comments