|
41 | 41 |
|
42 | 42 | ## intrinsic liouvillian |
43 | 43 | _liouvillian(H::MT, Id::AbstractMatrix) where {MT<:Union{AbstractMatrix,AbstractSciMLOperator}} = |
44 | | - -1im * (_spre(H, Id) - _spost(H, Id)) |
| 44 | + -1im * (_spre(H, Id) - _spost(H', Id)) |
45 | 45 | _liouvillian(H::MatrixOperator, Id::AbstractMatrix) = MatrixOperator(_liouvillian(H.A, Id)) |
46 | | -_liouvillian(H::ScaledOperator, Id::AbstractMatrix) = ScaledOperator(H.λ, _liouvillian(H.L, Id)) |
| 46 | +_liouvillian(H::ScaledOperator, Id::AbstractMatrix) = |
| 47 | + -1im * (ScaledOperator(H.λ, _spre(H.L, Id)) - ScaledOperator(conj(H.λ), _spost(H.L', Id))) |
47 | 48 | _liouvillian(H::AddedOperator, Id::AbstractMatrix) = AddedOperator(map(op -> _liouvillian(op, Id), H.ops)) |
48 | 49 |
|
49 | 50 | # intrinsic lindblad_dissipator |
@@ -144,7 +145,7 @@ lindblad_dissipator(O::AbstractQuantumObject{SuperOperator}, Id_cache = nothing) |
144 | 145 | Construct the Liouvillian [`SuperOperator`](@ref) for a system Hamiltonian ``\hat{H}`` and a set of collapse operators ``\{\hat{C}_n\}_n``: |
145 | 146 |
|
146 | 147 | ```math |
147 | | -\mathcal{L} [\cdot] = -i[\hat{H}, \cdot] + \sum_n \mathcal{D}(\hat{C}_n) [\cdot] |
| 148 | +\mathcal{L} [\cdot] = -i\left(\hat{H}[\cdot] - [\cdot]\hat{H}^\dagger\right) + \sum_n \mathcal{D}(\hat{C}_n) [\cdot] |
148 | 149 | ``` |
149 | 150 |
|
150 | 151 | where |
@@ -179,4 +180,4 @@ liouvillian(H::AbstractQuantumObject{Operator}, Id_cache::Diagonal = I(prod(H.di |
179 | 180 |
|
180 | 181 | liouvillian(H::AbstractQuantumObject{SuperOperator}, Id_cache::Diagonal) = H |
181 | 182 |
|
182 | | -_sum_lindblad_dissipators(c_ops, Id_cache::Diagonal) = sum(op -> lindblad_dissipator(op, Id_cache), c_ops) |
| 183 | +_sum_lindblad_dissipators(c_ops, Id_cache::Diagonal) = sum(op -> lindblad_dissipator(op, Id_cache), c_ops; init = 0) |
0 commit comments