|
| 1 | +function benchmark_autodiff!(SUITE) |
| 2 | + # Use harmonic oscillator system for both sesolve and mesolve |
| 3 | + N = 20 |
| 4 | + a = destroy(N) |
| 5 | + ψ0 = fock(N, 0) |
| 6 | + tlist = range(0, 40, 100) |
| 7 | + |
| 8 | + # ---- SESOLVE ---- |
| 9 | + # For direct Forward differentiation |
| 10 | + function my_f_sesolve_direct(p) |
| 11 | + H = p[1] * a' * a + p[2] * (a + a') |
| 12 | + sol = sesolve(H, ψ0, tlist, progress_bar = Val(false)) |
| 13 | + return real(expect(a' * a, sol.states[end])) |
| 14 | + end |
| 15 | + |
| 16 | + # For SciMLSensitivity.jl (reverse mode with Zygote and Enzyme) |
| 17 | + coef_Δ(p, t) = p[1] |
| 18 | + coef_F(p, t) = p[2] |
| 19 | + H_evo = QobjEvo(a' * a, coef_Δ) + QobjEvo(a + a', coef_F) |
| 20 | + |
| 21 | + function my_f_sesolve(p) |
| 22 | + sol = sesolve( |
| 23 | + H_evo, |
| 24 | + ψ0, |
| 25 | + tlist, |
| 26 | + progress_bar = Val(false), |
| 27 | + params = p, |
| 28 | + sensealg = BacksolveAdjoint(autojacvec = EnzymeVJP()), |
| 29 | + ) |
| 30 | + return real(expect(a' * a, sol.states[end])) |
| 31 | + end |
| 32 | + |
| 33 | + # ---- MESOLVE ---- |
| 34 | + # For direct Forward differentiation |
| 35 | + function my_f_mesolve_direct(p) |
| 36 | + H = p[1] * a' * a + p[2] * (a + a') |
| 37 | + c_ops = [sqrt(p[3]) * a] |
| 38 | + sol = mesolve(H, ψ0, tlist, c_ops, progress_bar = Val(false)) |
| 39 | + return real(expect(a' * a, sol.states[end])) |
| 40 | + end |
| 41 | + |
| 42 | + # For SciMLSensitivity.jl (reverse mode with Zygote and Enzyme) |
| 43 | + coef_γ(p, t) = sqrt(p[3]) |
| 44 | + c_ops = [QobjEvo(a, coef_γ)] |
| 45 | + L = liouvillian(H_evo, c_ops) |
| 46 | + |
| 47 | + function my_f_mesolve(p) |
| 48 | + sol = mesolve( |
| 49 | + L, |
| 50 | + ψ0, |
| 51 | + tlist, |
| 52 | + progress_bar = Val(false), |
| 53 | + params = p, |
| 54 | + sensealg = BacksolveAdjoint(autojacvec = EnzymeVJP()), |
| 55 | + ) |
| 56 | + return real(expect(a' * a, sol.states[end])) |
| 57 | + end |
| 58 | + |
| 59 | + # Parameters for benchmarks |
| 60 | + params_sesolve = [1.0, 1.0] |
| 61 | + params_mesolve = [1.0, 1.0, 1.0] |
| 62 | + |
| 63 | + # Benchmark sesolve - Forward |
| 64 | + SUITE["Autodiff"]["sesolve"]["Forward"] = @benchmarkable ForwardDiff.gradient($my_f_sesolve_direct, $params_sesolve) |
| 65 | + |
| 66 | + # Benchmark sesolve - Reverse (Zygote) |
| 67 | + SUITE["Autodiff"]["sesolve"]["Reverse (Zygote)"] = @benchmarkable Zygote.gradient($my_f_sesolve, $params_sesolve) |
| 68 | + |
| 69 | + # Benchmark sesolve - Reverse (Enzyme) |
| 70 | + SUITE["Autodiff"]["sesolve"]["Reverse (Enzyme)"] = @benchmarkable Enzyme.autodiff( |
| 71 | + Enzyme.set_runtime_activity(Enzyme.Reverse), |
| 72 | + Const($my_f_sesolve), |
| 73 | + Active, |
| 74 | + Duplicated($params_sesolve, dparams_sesolve), |
| 75 | + ) setup=(dparams_sesolve = Enzyme.make_zero($params_sesolve)) |
| 76 | + |
| 77 | + # Benchmark mesolve - Forward |
| 78 | + SUITE["Autodiff"]["mesolve"]["Forward"] = @benchmarkable ForwardDiff.gradient($my_f_mesolve_direct, $params_mesolve) |
| 79 | + |
| 80 | + # Benchmark mesolve - Reverse (Zygote) |
| 81 | + SUITE["Autodiff"]["mesolve"]["Reverse (Zygote)"] = @benchmarkable Zygote.gradient($my_f_mesolve, $params_mesolve) |
| 82 | + |
| 83 | + # Benchmark mesolve - Reverse (Enzyme) |
| 84 | + SUITE["Autodiff"]["mesolve"]["Reverse (Enzyme)"] = @benchmarkable Enzyme.autodiff( |
| 85 | + Enzyme.set_runtime_activity(Enzyme.Reverse), |
| 86 | + Const($my_f_mesolve), |
| 87 | + Active, |
| 88 | + Duplicated($params_mesolve, dparams_mesolve), |
| 89 | + ) setup=(dparams_mesolve = Enzyme.make_zero($params_mesolve)) |
| 90 | + |
| 91 | + return nothing |
| 92 | +end |
0 commit comments