Skip to content

Commit b7801ee

Browse files
committed
update documentation page for two-time correlation function
1 parent 48df25a commit b7801ee

File tree

3 files changed

+151
-1
lines changed

3 files changed

+151
-1
lines changed

docs/make.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ const PAGES = [
5151
],
5252
"Solving for Steady-State Solutions" => "users_guide/steadystate.md",
5353
"Symmetries" => [],
54-
"Two-time correlation functions" => [],
54+
"Two-time correlation functions" => "users_guide/two_time_corr_func.md",
5555
"Extensions" => [
5656
"users_guide/extensions/cuda.md",
5757
],

docs/src/resources/bibliography.bib

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,13 @@
1+
@book{Gardiner-Zoller2004,
2+
title = {Quantum Noise},
3+
ISBN = {9783540223016},
4+
url = {https://link.springer.com/book/9783540223016},
5+
publisher = {Springer Berlin, Heidelberg},
6+
author = {Gardiner, Crispin and Zoller, Peter},
7+
year = {2004},
8+
month = aug
9+
}
10+
111
@book{Nielsen-Chuang2011,
212
title = {Quantum Computation and Quantum Information: 10th Anniversary Edition},
313
ISBN = {9780511976667},
Lines changed: 140 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,140 @@
1+
# [Two-time Correlation Functions](@id doc:Two-time-Correlation-Functions)
2+
3+
## Introduction
4+
5+
With the `QuantumToolbox.jl` time-evolution function [`mesolve`](@ref), a state vector ([`Ket`](@ref)) or density matrix ([`Operator`](@ref)) can be evolved from an initial state at ``t_0`` to an arbitrary time ``t``, namely
6+
7+
```math
8+
\hat{\rho}(t) = \mathcal{G}(t, t_0)\{\hat{\rho}(t_0)\},
9+
```
10+
where ``\mathcal{G}(t, t_0)\{\cdot\}`` is the propagator defined by the equation of motion. The resulting density matrix can then be used to evaluate the expectation values of arbitrary combinations of same-time operators.
11+
12+
To calculate two-time correlation functions on the form ``\left\langle \hat{A}(t+\tau) \hat{B}(t) \right\rangle``, we can use the quantum regression theorem (see, e.g., [Gardiner-Zoller2004](@cite)) to write
13+
14+
```math
15+
\left\langle \hat{A}(t+\tau) \hat{B}(t) \right\rangle = \textrm{Tr} \left[\hat{A} \mathcal{G}(t+\tau, t)\{\hat{B}\hat{\rho}(t)\} \right] = \textrm{Tr} \left[\hat{A} \mathcal{G}(t+\tau, t)\{\hat{B} \mathcal{G}(t, 0)\{\hat{\rho}(0)\}\} \right],
16+
```
17+
18+
We therefore first calculate ``\hat{\rho}(t) = \mathcal{G}(t, 0)\{\hat{\rho}(0)\}`` using [`mesolve`](@ref) with ``\hat{\rho}(0)`` as initial state, and then again use [`mesolve`](@ref) to calculate ``\mathcal{G}(t+\tau, t)\{\hat{B}\hat{\rho}(t)\}`` using ``\hat{B}\hat{\rho}(t)`` as initial state.
19+
20+
Note that if the initial state is the steady state, then ``\hat{\rho}(t) = \mathcal{G}(t, 0)\{\hat{\rho}_{\textrm{ss}}\} = \hat{\rho}_{\textrm{ss}}`` and
21+
22+
```math
23+
\left\langle \hat{A}(t+\tau) \hat{B}(t) \right\rangle = \textrm{Tr} \left[\hat{A} \mathcal{G}(t+\tau, t)\{\hat{B}\hat{\rho}_{\textrm{ss}}\} \right] = \textrm{Tr} \left[\hat{A} \mathcal{G}(\tau, 0)\{\hat{B} \hat{\rho}_{\textrm{ss}}\} \right] = \left\langle \hat{A}(\tau) \hat{B}(0) \right\rangle,
24+
```
25+
which is independent of ``t``, so that we only have one time coordinate ``\tau``.
26+
27+
`QuantumToolbox.jl` provides a family of functions that assists in the process of calculating two-time correlation functions. The available functions and their usage is shown in the table below.
28+
29+
| **Function call** | **Correlation function** |
30+
|:------------------|:-------------------------|
31+
| [`correlation_2op_2t`](@ref) | ``\left\langle \hat{A}(t + \tau) \hat{B}(t) \right\rangle`` or ``\left\langle \hat{A}(t) \hat{B}(t + \tau) \right\rangle`` |
32+
| [`correlation_2op_1t`](@ref) | ``\left\langle \hat{A}(\tau) \hat{B}(0) \right\rangle`` or ``\left\langle \hat{A}(0) \hat{B}(\tau) \right\rangle`` |
33+
| [`correlation_3op_1t`](@ref) | ``\left\langle \hat{A}(0) \hat{B}(\tau) \hat{C}(0) \right\rangle`` |
34+
| [`correlation_3op_2t`](@ref) | ``\left\langle \hat{A}(t) \hat{B}(t + \tau) \hat{C}(t) \right\rangle`` |
35+
36+
The most common used case is to calculate the two time correlation function ``\left\langle \hat{A}(\tau) \hat{B}(0) \right\rangle``, which can be done by [`correlation_2op_1t`](@ref).
37+
38+
```@setup correlation_and_spectrum
39+
using QuantumToolbox
40+
41+
using CairoMakie
42+
CairoMakie.enable_only_mime!(MIME"image/svg+xml"())
43+
```
44+
45+
## Steadystate correlation function
46+
47+
The following code demonstrates how to calculate the ``\langle \hat{x}(t) \hat{x}(0)\rangle`` correlation for a leaky cavity with three different relaxation rates ``\gamma``.
48+
49+
```@example correlation_and_spectrum
50+
tlist = LinRange(0, 10, 200)
51+
a = destroy(10)
52+
x = a' + a
53+
H = a' * a
54+
55+
# if the initial state is specified as `nothing`, the steady state will be calculated and used as the initial state.
56+
corr1 = correlation_2op_1t(H, nothing, tlist, [sqrt(0.5) * a], x, x)
57+
corr2 = correlation_2op_1t(H, nothing, tlist, [sqrt(1.0) * a], x, x)
58+
corr3 = correlation_2op_1t(H, nothing, tlist, [sqrt(2.0) * a], x, x)
59+
60+
# plot by CairoMakie.jl
61+
fig = Figure(size = (500, 350))
62+
ax = Axis(fig[1, 1], xlabel = L"Time $t$", ylabel = L"\langle \hat{x}(t) \hat{x}(0) \rangle")
63+
lines!(ax, tlist, real(corr1), label = L"\gamma = 0.5", linestyle = :solid)
64+
lines!(ax, tlist, real(corr2), label = L"\gamma = 1.0", linestyle = :dash)
65+
lines!(ax, tlist, real(corr3), label = L"\gamma = 2.0", linestyle = :dashdot)
66+
67+
axislegend(ax, position = :rt)
68+
69+
fig
70+
```
71+
72+
## Emission spectrum
73+
74+
Given a correlation function ``\langle \hat{A}(\tau) \hat{B}(0) \rangle``, we can define the corresponding power spectrum as
75+
76+
```math
77+
S(\omega) = \int_{-\infty}^\infty \left\langle \hat{A}(\tau) \hat{B}(0) \right\rangle e^{-i \omega \tau} d \tau
78+
```
79+
80+
In `QuantumToolbox.jl`, we can calculate ``S(\omega)`` using either [`spectrum`](@ref), which provides several solvers to perform the Fourier transform semi-analytically, or we can use the function [`spectrum_correlation_fft`](@ref) to numerically calculate the fast Fourier transform (FFT) of a given correlation data.
81+
82+
The following example demonstrates how these methods can be used to obtain the emission (``\hat{A} = \hat{a}^\dagger`` and ``\hat{B} = \hat{a}``) power spectrum.
83+
84+
```@example correlation_and_spectrum
85+
N = 4 # number of cavity fock states
86+
ωc = 1.0 * 2 * π # cavity frequency
87+
ωa = 1.0 * 2 * π # atom frequency
88+
g = 0.1 * 2 * π # coupling strength
89+
κ = 0.75 # cavity dissipation rate
90+
γ = 0.25 # atom dissipation rate
91+
92+
# Jaynes-Cummings Hamiltonian
93+
a = tensor(destroy(N), qeye(2))
94+
sm = tensor(qeye(N), destroy(2))
95+
H = ωc * a' * a + ωa * sm' * sm + g * (a' * sm + a * sm')
96+
97+
# collapse operators
98+
n_th = 0.25
99+
c_ops = [
100+
sqrt(κ * (1 + n_th)) * a,
101+
sqrt(κ * n_th) * a',
102+
sqrt(γ) * sm,
103+
];
104+
105+
# calculate the correlation function using mesolve, and then FFT to obtain the spectrum.
106+
# Here we need to make sure to evaluate the correlation function for a sufficient long time and
107+
# sufficiently high sampling rate so that FFT captures all the features in the resulting spectrum.
108+
tlist = LinRange(0, 100, 5000)
109+
corr = correlation_2op_1t(H, nothing, tlist, c_ops, a', a; progress_bar = Val(false))
110+
ωlist1, spec1 = spectrum_correlation_fft(tlist, corr)
111+
112+
# calculate the power spectrum using spectrum
113+
# using Exponential Series (default) method
114+
ωlist2 = LinRange(0.25, 1.75, 200) * 2 * π
115+
spec2 = spectrum(H, ωlist2, c_ops, a', a; solver = ExponentialSeries())
116+
117+
# calculate the power spectrum using spectrum
118+
# using Pseudo-Inverse method
119+
spec3 = spectrum(H, ωlist2, c_ops, a', a; solver = PseudoInverse())
120+
121+
# plot by CairoMakie.jl
122+
fig = Figure(size = (500, 350))
123+
ax = Axis(fig[1, 1], title = "Vacuum Rabi splitting", xlabel = "Frequency", ylabel = "Emission power spectrum")
124+
lines!(ax, ωlist1 / (2 * π), spec1, label = "mesolve + FFT", linestyle = :solid)
125+
lines!(ax, ωlist2 / (2 * π), spec2, label = "Exponential Series", linestyle = :dash)
126+
lines!(ax, ωlist2 / (2 * π), spec3, label = "Pseudo-Inverse", linestyle = :dashdot)
127+
128+
xlims!(ax, ωlist2[1] / (2 * π), ωlist2[end] / (2 * π))
129+
axislegend(ax, position = :rt)
130+
131+
fig
132+
```
133+
134+
## Non-steadystate correlation function
135+
136+
The following part of this page is still under construction, please visit [API](@ref doc-API) first.
137+
138+
### Example: first-order optical coherence function
139+
140+
### Example: second-order optical coherence function

0 commit comments

Comments
 (0)