|
1 | | -import QuantumToolbox: _spre, _spost, _sprepost, makeVal, getVal |
2 | | - |
3 | 1 | @doc raw""" |
4 | 2 | bloch_redfield_tensor( |
5 | 3 | H::QuantumObject{Operator}, |
@@ -58,74 +56,6 @@ function bloch_redfield_tensor( |
58 | 56 | end |
59 | 57 | end |
60 | 58 |
|
61 | | - |
62 | | -function brcrossterm( |
63 | | - H::T, a_op::T, b_op::T, spectra::F; sec_cutoff::Real=0.1, |
64 | | - fock_basis::Bool=false |
65 | | - ) where {T<:QuantumObject{Operator}, F<:Function} |
66 | | - return brcrossterm(H, a_op, b_op, spectra, sec_cutoff, makeVal(fock_basis)) |
67 | | -end |
68 | | - |
69 | | -function brcrossterm( |
70 | | - H::T, a_op::T, b_op::T, spectra::F, sec_cutoff::Real, fock_basis::Val{true} |
71 | | - ) where {T<:QuantumObject{Operator}, F<:Function} |
72 | | - rst = eigenstates(H) |
73 | | - return _brcrossterm(rst, a_op, b_op, spectra, sec_cutoff, Val(true)) |
74 | | -end |
75 | | - |
76 | | -function brcrossterm( |
77 | | - H::T, a_op::T, b_op::T, spectra::F, sec_cutoff::Real, fock_basis::Val{false} |
78 | | - ) where {T<:QuantumObject{Operator}, F<:Function} |
79 | | - rst = eigenstates(H) |
80 | | - return _brcrossterm(rst, a_op, b_op, spectra, sec_cutoff, Val(false)), Qobj(rst.vectors, Operator(), rst.dimensions) |
81 | | -end |
82 | | - |
83 | | -function _brcrossterm( |
84 | | - rst::EigsolveResult, |
85 | | - a_op::T, |
86 | | - b_op::T, |
87 | | - spectra::F, |
88 | | - sec_cutoff::Real, |
89 | | - fock_basis::Union{Val{true},Val{false}} |
90 | | - ) where {T<:QuantumObject{Operator},F<:Function} |
91 | | - |
92 | | - _check_br_spectra(spectra) |
93 | | - |
94 | | - cutoff = (sec_cutoff == -1) ? Inf : sec_cutoff |> float |
95 | | - U, N = rst.vectors, length(rst.values) |
96 | | - |
97 | | - skew = @. rst.values - rst.values' |> real |
98 | | - spectrum = spectra.(skew) |
99 | | - |
100 | | - A_mat = U' * a_op.data * U |
101 | | - B_mat = U' * b_op.data * U |
102 | | - |
103 | | - m_cut = similar(A_mat) |
104 | | - map!(x -> abs(x) < cutoff, m_cut, skew) |
105 | | - |
106 | | - ac_term = (A_mat .* spectrum) * B_mat |
107 | | - bd_term = A_mat * (B_mat .* trans(spectrum)) |
108 | | - ac_term .*= m_cut |
109 | | - bd_term .*= m_cut |
110 | | - |
111 | | - Id = I(N) |
112 | | - vec_skew = vec(skew) |
113 | | - M_cut = @. abs(vec_skew - vec_skew') < cutoff |
114 | | - |
115 | | - out = 1/2 * ( |
116 | | - + QuantumToolbox._sprepost(B_mat .* trans(spectrum), A_mat) |
117 | | - + QuantumToolbox._sprepost(B_mat, A_mat .* spectrum) |
118 | | - - _spost(ac_term, Id) |
119 | | - - QuantumToolbox._spre(bd_term, Id) |
120 | | - ) .* M_cut |
121 | | - |
122 | | - if getVal(fock_basis) |
123 | | - return QuantumObject(_sprepost(U, U') * out * _sprepost(U', U), SuperOperator(), rst.dimensions) |
124 | | - else |
125 | | - return QuantumObject(out, SuperOperator(), rst.dimensions) |
126 | | - end |
127 | | -end |
128 | | - |
129 | 59 | @doc raw""" |
130 | 60 | brterm( |
131 | 61 | H::QuantumObject{Operator}, |
@@ -200,10 +130,10 @@ function _brterm( |
200 | 130 | end |
201 | 131 |
|
202 | 132 | out = 0.5 * ( |
203 | | - + QuantumToolbox._sprepost(A_mat .* trans(spectrum), A_mat) |
204 | | - + QuantumToolbox._sprepost(A_mat, A_mat .* spectrum) |
| 133 | + + _sprepost(A_mat .* trans(spectrum), A_mat) |
| 134 | + + _sprepost(A_mat, A_mat .* spectrum) |
205 | 135 | - _spost(ac_term, Id) |
206 | | - - QuantumToolbox._spre(bd_term, Id) |
| 136 | + - _spre(bd_term, Id) |
207 | 137 | ) |
208 | 138 |
|
209 | 139 | (sec_cutoff != -1) && (out .*= M_cut) |
|
0 commit comments