You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Generate the SDEProblem for the Stochastic Master Equation time evolution of an open quantum system. This is defined by the following stochastic differential equation:
Above, ``\hat{C}_n`` represent the operators related to pure dissipation, while ``\hat{S}_n`` are the measurement operators. The ``dW_n(t)`` term is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
44
+
Above, ``\hat{C}_i`` represent the collapse operators related to pure dissipation, while ``\hat{S}_n`` are the stochastic collapse operators. The ``dW_n(t)`` term is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
45
45
46
46
# Arguments
47
47
48
48
- `H`: Hamiltonian of the system ``\hat{H}``. It can be either a [`QuantumObject`](@ref), a [`QuantumObjectEvolution`](@ref), or a `Tuple` of operator-function pairs.
49
49
- `ψ0`: Initial state of the system ``|\psi(0)\rangle``. It can be either a [`Ket`](@ref) or a [`Operator`](@ref).
50
50
- `tlist`: List of times at which to save either the state or the expectation values of the system.
51
-
- `c_ops`: List of collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
52
-
- `sc_ops`: List of measurement collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
51
+
- `c_ops`: List of collapse operators ``\{\hat{C}_i\}_i``. It can be either a `Vector` or a `Tuple`.
52
+
- `sc_ops`: List of stochastic collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
53
53
- `e_ops`: List of operators for which to calculate expectation values. It can be either a `Vector` or a `Tuple`.
54
54
- `params`: `NamedTuple` of parameters to pass to the solver.
55
55
- `rng`: Random number generator for reproducibility.
@@ -69,7 +69,7 @@ Above, ``\hat{C}_n`` represent the operators related to pure dissipation, while
Generate the SDEProblem for the Stochastic Master Equation time evolution of an open quantum system. This is defined by the following stochastic differential equation:
Above, ``\hat{C}_n`` represent the operators related to pure dissipation, while ``\hat{S}_n`` are the measurement operators. The ``dW_n(t)`` term is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
167
+
Above, ``\hat{C}_i`` represent the collapse operators related to pure dissipation, while ``\hat{S}_n`` are the stochastic collapse operators. The ``dW_n(t)`` term is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
168
168
169
169
# Arguments
170
170
171
171
- `H`: Hamiltonian of the system ``\hat{H}``. It can be either a [`QuantumObject`](@ref), a [`QuantumObjectEvolution`](@ref), or a `Tuple` of operator-function pairs.
172
172
- `ψ0`: Initial state of the system ``|\psi(0)\rangle``. It can be either a [`Ket`](@ref) or a [`Operator`](@ref).
173
173
- `tlist`: List of times at which to save either the state or the expectation values of the system.
174
-
- `c_ops`: List of collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
175
-
- `sc_ops`: List of measurement collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
174
+
- `c_ops`: List of collapse operators ``\{\hat{C}_i\}_i``. It can be either a `Vector` or a `Tuple`.
175
+
- `sc_ops`: List of stochastic collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
176
176
- `e_ops`: List of operators for which to calculate expectation values. It can be either a `Vector` or a `Tuple`.
177
177
- `params`: `NamedTuple` of parameters to pass to the solver.
178
178
- `rng`: Random number generator for reproducibility.
@@ -196,7 +196,7 @@ Above, ``\hat{C}_n`` represent the operators related to pure dissipation, while
Above, ``\hat{C}_n`` represent the operators related to pure dissipation, while ``\hat{S}_n`` are the measurement operators. The ``dW_n(t)`` term is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
279
+
Above, ``\hat{C}_i`` represent the collapse operators related to pure dissipation, while ``\hat{S}_n`` are the stochastic co operators. The ``dW_n(t)`` term is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
280
280
281
281
# Arguments
282
282
283
283
- `H`: Hamiltonian of the system ``\hat{H}``. It can be either a [`QuantumObject`](@ref), a [`QuantumObjectEvolution`](@ref), or a `Tuple` of operator-function pairs.
284
284
- `ψ0`: Initial state of the system ``|\psi(0)\rangle``. It can be either a [`Ket`](@ref) or a [`Operator`](@ref).
285
285
- `tlist`: List of times at which to save either the state or the expectation values of the system.
286
-
- `c_ops`: List of collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
287
-
- `sc_ops`: List of measurement collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
286
+
- `c_ops`: List of collapse operators ``\{\hat{C}_i\}_i``. It can be either a `Vector` or a `Tuple`.
287
+
- `sc_ops`: List of stochastic collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
288
288
- `alg`: The algorithm to use for the stochastic differential equation. Default is `SRA1()`.
289
289
- `e_ops`: List of operators for which to calculate expectation values. It can be either a `Vector` or a `Tuple`.
290
290
- `params`: `NamedTuple` of parameters to pass to the solver.
@@ -309,7 +309,7 @@ Above, ``\hat{C}_n`` represent the operators related to pure dissipation, while
Above, ``\hat{C}_n`` is the `n`-th collapse operator and ``dW_n(t)`` is the real Wiener increment associated to ``\hat{C}_n``. See [Wiseman2009Quantum](@cite) for more details.
121
+
Above, ``\hat{S}_n`` are the stochastic collapse operators and ``dW_n(t)`` is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
122
122
123
123
# Arguments
124
124
125
125
- `H`: Hamiltonian of the system ``\hat{H}``. It can be either a [`QuantumObject`](@ref), a [`QuantumObjectEvolution`](@ref), or a `Tuple` of operator-function pairs.
126
126
- `ψ0`: Initial state of the system ``|\psi(0)\rangle``.
127
127
- `tlist`: List of times at which to save either the state or the expectation values of the system.
128
-
- `sc_ops`: List of collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
128
+
- `sc_ops`: List of stochastic collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
129
129
- `e_ops`: List of operators for which to calculate expectation values. It can be either a `Vector` or a `Tuple`.
130
130
- `params`: `NamedTuple` of parameters to pass to the solver.
131
131
- `rng`: Random number generator for reproducibility.
@@ -158,7 +158,7 @@ function ssesolveProblem(
158
158
throw(ArgumentError("The keyword argument \"save_idxs\" is not supported in QuantumToolbox."))
159
159
160
160
sc_ops isa Nothing &&
161
-
throw(ArgumentError("The list of collapse operators must be provided. Use sesolveProblem instead."))
161
+
throw(ArgumentError("The list of stochastic collapse operators must be provided. Use sesolveProblem instead."))
Above, ``\hat{C}_n`` is the `n`-th collapse operator and ``dW_n(t)`` is the real Wiener increment associated to ``\hat{C}_n``. See [Wiseman2009Quantum](@cite) for more details.
240
+
Above, ``\hat{S}_n`` are the stochastic collapse operators and ``dW_n(t)`` is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
241
241
242
242
# Arguments
243
243
244
244
- `H`: Hamiltonian of the system ``\hat{H}``. It can be either a [`QuantumObject`](@ref), a [`QuantumObjectEvolution`](@ref), or a `Tuple` of operator-function pairs.
245
245
- `ψ0`: Initial state of the system ``|\psi(0)\rangle``.
246
246
- `tlist`: List of times at which to save either the state or the expectation values of the system.
247
-
- `sc_ops`: List of collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
247
+
- `sc_ops`: List of stochastic collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
248
248
- `e_ops`: List of operators for which to calculate expectation values. It can be either a `Vector` or a `Tuple`.
249
249
- `params`: `NamedTuple` of parameters to pass to the solver.
250
250
- `rng`: Random number generator for reproducibility.
@@ -340,7 +340,7 @@ end
340
340
)
341
341
342
342
343
-
Stochastic Schrödinger equation evolution of a quantum system given the system Hamiltonian ``\hat{H}`` and a list of stochadtic collapse (jump) operators ``\{\hat{C}_n\}_n``.
343
+
Stochastic Schrödinger equation evolution of a quantum system given the system Hamiltonian ``\hat{H}`` and a list of stochastic collapse (jump) operators ``\{\hat{S}_n\}_n``.
344
344
The stochastic evolution of the state ``|\psi(t)\rangle`` is defined by:
Above, ``\hat{C}_n`` is the `n`-th collapse operator and ``dW_n(t)`` is the real Wiener increment associated to ``\hat{C}_n``. See [Wiseman2009Quantum](@cite) for more details.
363
+
Above, ``\hat{S}_n`` are the stochastic collapse operators and ``dW_n(t)`` is the real Wiener increment associated to ``\hat{S}_n``. See [Wiseman2009Quantum](@cite) for more details.
364
364
365
365
366
366
# Arguments
367
367
368
368
- `H`: Hamiltonian of the system ``\hat{H}``. It can be either a [`QuantumObject`](@ref), a [`QuantumObjectEvolution`](@ref), or a `Tuple` of operator-function pairs.
369
369
- `ψ0`: Initial state of the system ``|\psi(0)\rangle``.
370
370
- `tlist`: List of times at which to save either the state or the expectation values of the system.
371
-
- `sc_ops`: List of collapse operators ``\{\hat{C}_n\}_n``. It can be either a `Vector` or a `Tuple`.
371
+
- `sc_ops`: List of stochastic collapse operators ``\{\hat{S}_n\}_n``. It can be either a `Vector` or a `Tuple`.
372
372
- `alg`: The algorithm to use for the stochastic differential equation. Default is `SRA1()`.
373
373
- `e_ops`: List of operators for which to calculate expectation values. It can be either a `Vector` or a `Tuple`.
374
374
- `params`: `NamedTuple` of parameters to pass to the solver.
0 commit comments