|
| 1 | +@testset "Autodiff" verbose=true begin |
| 2 | + @testset "sesolve" verbose=true begin |
| 3 | + ψ0 = fock(2, 1) |
| 4 | + t_max = 10 |
| 5 | + tlist = range(0, t_max, 100) |
| 6 | + |
| 7 | + # For direct Forward differentiation |
| 8 | + function my_f_sesolve_direct(p) |
| 9 | + H = p[1] * sigmax() |
| 10 | + sol = sesolve(H, ψ0, tlist, progress_bar = Val(false)) |
| 11 | + |
| 12 | + return real(expect(projection(2, 0, 0), sol.states[end])) |
| 13 | + end |
| 14 | + |
| 15 | + # For SciMLSensitivity.jl |
| 16 | + coef_Ω(p, t) = p[1] |
| 17 | + H_evo = QobjEvo(sigmax(), coef_Ω) |
| 18 | + |
| 19 | + function my_f_sesolve(p) |
| 20 | + sol = sesolve( |
| 21 | + H_evo, |
| 22 | + ψ0, |
| 23 | + tlist, |
| 24 | + progress_bar = Val(false), |
| 25 | + params = p, |
| 26 | + sensealg = BacksolveAdjoint(autojacvec = EnzymeVJP()), |
| 27 | + ) |
| 28 | + |
| 29 | + return real(expect(projection(2, 0, 0), sol.states[end])) |
| 30 | + end |
| 31 | + |
| 32 | + # Analytical solution |
| 33 | + my_f_analytic(Ω) = abs2(sin(Ω * t_max)) |
| 34 | + my_f_analytic_deriv(Ω) = 2 * t_max * sin(Ω * t_max) * cos(Ω * t_max) |
| 35 | + |
| 36 | + Ω = 1.0 |
| 37 | + params = [Ω] |
| 38 | + |
| 39 | + my_f_sesolve_direct(params) |
| 40 | + my_f_sesolve(params) |
| 41 | + |
| 42 | + grad_exact = [my_f_analytic_deriv(params[1])] |
| 43 | + |
| 44 | + @testset "ForwardDiff.jl" begin |
| 45 | + grad_qt = ForwardDiff.gradient(my_f_sesolve_direct, params) |
| 46 | + |
| 47 | + @test grad_qt ≈ grad_exact atol=1e-6 |
| 48 | + end |
| 49 | + |
| 50 | + @testset "Zygote.jl" begin |
| 51 | + grad_qt = Zygote.gradient(my_f_sesolve, params)[1] |
| 52 | + |
| 53 | + @test grad_qt ≈ grad_exact atol=1e-6 |
| 54 | + end |
| 55 | + end |
| 56 | + |
| 57 | + @testset "mesolve" verbose=true begin |
| 58 | + N = 20 |
| 59 | + a = destroy(N) |
| 60 | + ψ0 = fock(N, 0) |
| 61 | + tlist = range(0, 40, 100) |
| 62 | + |
| 63 | + # For direct Forward differentiation |
| 64 | + function my_f_mesolve_direct(p) |
| 65 | + H = p[1] * a' * a + p[2] * (a + a') |
| 66 | + c_ops = [sqrt(p[3]) * a] |
| 67 | + sol = mesolve(H, ψ0, tlist, c_ops, progress_bar = Val(false)) |
| 68 | + return real(expect(a' * a, sol.states[end])) |
| 69 | + end |
| 70 | + |
| 71 | + # For SciMLSensitivity.jl |
| 72 | + coef_Δ(p, t) = p[1] |
| 73 | + coef_F(p, t) = p[2] |
| 74 | + coef_γ(p, t) = sqrt(p[3]) |
| 75 | + H = QobjEvo(a' * a, coef_Δ) + QobjEvo(a + a', coef_F) |
| 76 | + c_ops = [QobjEvo(a, coef_γ)] |
| 77 | + L = liouvillian(H, c_ops) |
| 78 | + |
| 79 | + function my_f_mesolve(p) |
| 80 | + sol = mesolve( |
| 81 | + L, |
| 82 | + ψ0, |
| 83 | + tlist, |
| 84 | + progress_bar = Val(false), |
| 85 | + params = p, |
| 86 | + sensealg = BacksolveAdjoint(autojacvec = EnzymeVJP()), |
| 87 | + ) |
| 88 | + |
| 89 | + return real(expect(a' * a, sol.states[end])) |
| 90 | + end |
| 91 | + |
| 92 | + # Analytical solution |
| 93 | + n_ss(Δ, F, γ) = abs2(F / (Δ + 1im * γ / 2)) |
| 94 | + |
| 95 | + Δ = 1.0 |
| 96 | + F = 1.0 |
| 97 | + γ = 1.0 |
| 98 | + params = [Δ, F, γ] |
| 99 | + |
| 100 | + my_f_mesolve_direct(params) |
| 101 | + my_f_mesolve(params) |
| 102 | + |
| 103 | + grad_exact = Zygote.gradient((p) -> n_ss(p[1], p[2], p[3]), params)[1] |
| 104 | + |
| 105 | + @testset "ForwardDiff.jl" begin |
| 106 | + grad_qt = ForwardDiff.gradient(my_f_mesolve_direct, params) |
| 107 | + @test grad_qt ≈ grad_exact atol=1e-6 |
| 108 | + end |
| 109 | + |
| 110 | + @testset "Zygote.jl" begin |
| 111 | + grad_qt = Zygote.gradient(my_f_mesolve, params)[1] |
| 112 | + @test grad_qt ≈ grad_exact atol=1e-6 |
| 113 | + end |
| 114 | + end |
| 115 | +end |
0 commit comments