|
54 | 54 | sol_me = mesolve(H, psi0, t_l, c_ops, e_ops = e_ops, progress_bar = Val(false)) |
55 | 55 | sol_me2 = mesolve(H, psi0, t_l, c_ops, progress_bar = Val(false)) |
56 | 56 | sol_me3 = mesolve(H, psi0, t_l, c_ops, e_ops = e_ops, saveat = t_l, progress_bar = Val(false)) |
57 | | - sol_mc = mcsolve(H, psi0, t_l, c_ops, n_traj = 500, e_ops = e_ops, progress_bar = Val(false)) |
58 | | - sol_mc_states = mcsolve(H, psi0, t_l, c_ops, n_traj = 500, saveat = t_l, progress_bar = Val(false)) |
59 | | - sol_sse = ssesolve(H, psi0, t_l, c_ops, n_traj = 500, e_ops = e_ops, progress_bar = Val(false)) |
| 57 | + sol_mc = mcsolve(H, psi0, t_l, c_ops, ntraj = 500, e_ops = e_ops, progress_bar = Val(false)) |
| 58 | + sol_mc_states = mcsolve(H, psi0, t_l, c_ops, ntraj = 500, saveat = t_l, progress_bar = Val(false)) |
| 59 | + sol_sse = ssesolve(H, psi0, t_l, c_ops, ntraj = 500, e_ops = e_ops, progress_bar = Val(false)) |
60 | 60 |
|
61 | 61 | ρt_mc = [ket2dm.(normalize.(states)) for states in sol_mc_states.states] |
62 | 62 | expect_mc_states = mapreduce(states -> expect.(Ref(e_ops[1]), states), hcat, ρt_mc) |
|
87 | 87 | "Solution of quantum trajectories\n" * |
88 | 88 | "(converged: $(sol_mc.converged))\n" * |
89 | 89 | "--------------------------------\n" * |
90 | | - "num_trajectories = $(sol_mc.n_traj)\n" * |
| 90 | + "num_trajectories = $(sol_mc.ntraj)\n" * |
91 | 91 | "num_states = $(length(sol_mc.states[1]))\n" * |
92 | 92 | "num_expect = $(size(sol_mc.expect, 1))\n" * |
93 | 93 | "ODE alg.: $(sol_mc.alg)\n" * |
|
97 | 97 | "Solution of quantum trajectories\n" * |
98 | 98 | "(converged: $(sol_sse.converged))\n" * |
99 | 99 | "--------------------------------\n" * |
100 | | - "num_trajectories = $(sol_sse.n_traj)\n" * |
| 100 | + "num_trajectories = $(sol_sse.ntraj)\n" * |
101 | 101 | "num_states = $(length(sol_sse.states[1]))\n" * |
102 | 102 | "num_expect = $(size(sol_sse.expect, 1))\n" * |
103 | 103 | "SDE alg.: $(sol_sse.alg)\n" * |
|
119 | 119 | psi0, |
120 | 120 | t_l, |
121 | 121 | c_ops, |
122 | | - n_traj = 500, |
| 122 | + ntraj = 500, |
123 | 123 | e_ops = e_ops, |
124 | 124 | progress_bar = Val(false), |
125 | 125 | ) |
126 | | - @inferred mcsolve(H, psi0, t_l, c_ops, n_traj = 500, e_ops = e_ops, progress_bar = Val(false)) |
127 | | - @inferred mcsolve(H, psi0, t_l, c_ops, n_traj = 500, progress_bar = Val(true)) |
128 | | - @inferred mcsolve(H, psi0, [0, 10], c_ops, n_traj = 500, progress_bar = Val(false)) |
129 | | - @inferred mcsolve(H, Qobj(zeros(Int64, N)), t_l, c_ops, n_traj = 500, progress_bar = Val(false)) |
| 126 | + @inferred mcsolve(H, psi0, t_l, c_ops, ntraj = 500, e_ops = e_ops, progress_bar = Val(false)) |
| 127 | + @inferred mcsolve(H, psi0, t_l, c_ops, ntraj = 500, progress_bar = Val(true)) |
| 128 | + @inferred mcsolve(H, psi0, [0, 10], c_ops, ntraj = 500, progress_bar = Val(false)) |
| 129 | + @inferred mcsolve(H, Qobj(zeros(Int64, N)), t_l, c_ops, ntraj = 500, progress_bar = Val(false)) |
130 | 130 | end |
131 | 131 |
|
132 | 132 | @testset "Type Inference ssesolve" begin |
|
135 | 135 | psi0, |
136 | 136 | t_l, |
137 | 137 | c_ops, |
138 | | - n_traj = 500, |
| 138 | + ntraj = 500, |
139 | 139 | e_ops = e_ops, |
140 | 140 | progress_bar = Val(false), |
141 | 141 | ) |
142 | | - @inferred ssesolve(H, psi0, t_l, c_ops, n_traj = 500, e_ops = e_ops, progress_bar = Val(false)) |
143 | | - @inferred ssesolve(H, psi0, t_l, c_ops, n_traj = 500, progress_bar = Val(true)) |
| 142 | + @inferred ssesolve(H, psi0, t_l, c_ops, ntraj = 500, e_ops = e_ops, progress_bar = Val(false)) |
| 143 | + @inferred ssesolve(H, psi0, t_l, c_ops, ntraj = 500, progress_bar = Val(true)) |
144 | 144 | end |
145 | 145 | end |
146 | 146 |
|
|
179 | 179 | psi0 = kron(psi0_1, psi0_2) |
180 | 180 | t_l = LinRange(0, 20 / γ1, 1000) |
181 | 181 | sol_me = mesolve(H, psi0, t_l, c_ops, e_ops = [sp1 * sm1, sp2 * sm2], progress_bar = false) # Here we don't put Val(false) because we want to test the support for Bool type |
182 | | - sol_mc = mcsolve(H, psi0, t_l, c_ops, n_traj = 500, e_ops = [sp1 * sm1, sp2 * sm2], progress_bar = Val(false)) |
| 182 | + sol_mc = mcsolve(H, psi0, t_l, c_ops, ntraj = 500, e_ops = [sp1 * sm1, sp2 * sm2], progress_bar = Val(false)) |
183 | 183 | @test sum(abs.(sol_mc.expect[1:2, :] .- sol_me.expect[1:2, :])) / length(t_l) < 0.1 |
184 | 184 | @test expect(sp1 * sm1, sol_me.states[end]) ≈ expect(sigmap() * sigmam(), ptrace(sol_me.states[end], 1)) |
185 | 185 | end |
|
0 commit comments