@@ -193,24 +193,24 @@ function _spectrum(
193193 Length = length (ωList)
194194
195195 # Current and previous estimates of the spectrum
196- lanczosFactor = vT (zeros (cT, Length))
196+ lanczosFactor = vT (zeros (cT, Length))
197197 lanczosFactor₋₁ = vT (zeros (cT, Length))
198198
199199 # Tridiagonal matrix elements
200- αₖ = cT ( 0 )
200+ αₖ = cT (0 )
201201 βₖ = cT (- 1 )
202202 δₖ = cT (+ 1 )
203203
204204 # Current and up to second-to-last A and B Euler sequences
205- A₋₂ = vT ( ones (cT, Length))
205+ A₋₂ = vT (ones (cT, Length))
206206 A₋₁ = vT (zeros (cT, Length))
207- Aₖ = vT (zeros (cT, Length))
207+ Aₖ = vT (zeros (cT, Length))
208208 B₋₂ = vT (zeros (cT, Length))
209- B₋₁ = vT ( ones (cT, Length))
210- Bₖ = vT (zeros (cT, Length))
209+ B₋₁ = vT (ones (cT, Length))
210+ Bₖ = vT (zeros (cT, Length))
211211
212212 # Maximum norm and residue
213- maxNorm = vT (zeros (cT, length (ωList)))
213+ maxNorm = vT (zeros (cT, length (ωList)))
214214 maxResidue = fT (0.0 )
215215
216216 # Previous and next left/right Krylov vectors
@@ -227,7 +227,7 @@ function _spectrum(
227227 # k-th diagonal element
228228 w₊₁ = wₖ * L. data
229229 αₖ = w₊₁ * vₖ
230-
230+
231231 # Update A(k), B(k) and continuous fraction; normalization avoids overflow
232232 Aₖ .= (- 1im .* ωList .+ αₖ) .* A₋₁ .- (βₖ * δₖ) .* A₋₂
233233 Bₖ .= (- 1im .* ωList .+ αₖ) .* B₋₁ .- (βₖ * δₖ) .* B₋₂
@@ -236,16 +236,17 @@ function _spectrum(
236236
237237 # Renormalize Euler sequences to avoid overflow
238238 if k % renormFrequency == 0
239- maxNorm .= max .(abs .(Aₖ), abs .(Bₖ)) # Note: the MATLAB and C++ codes return the actual complex number
239+ maxNorm .= max .(abs .(Aₖ), abs .(Bₖ))
240240 Aₖ ./= maxNorm
241241 Bₖ ./= maxNorm
242242 A₋₁ ./= maxNorm
243243 B₋₁ ./= maxNorm
244244 end
245245
246246 # Check for convergence
247- maxResidue = maximum (abs .(lanczosFactor .- lanczosFactor₋₁)) /
248- max (maximum (abs .(lanczosFactor)), maximum (abs .(lanczosFactor₋₁)))
247+ maxResidue =
248+ maximum (abs .(lanczosFactor .- lanczosFactor₋₁)) /
249+ max (maximum (abs .(lanczosFactor)), maximum (abs .(lanczosFactor₋₁)))
249250 if maxResidue <= solver. tol
250251 if solver. verbose > 1
251252 println (" spectrum(): solver::Lanczos converged after $(k) iterations" )
@@ -260,13 +261,13 @@ function _spectrum(
260261 w₊₁ .= w₊₁ .- αₖ .* wₖ .- δₖ .* w₋₁
261262 v₋₁ .= vₖ
262263 w₋₁ .= wₖ
263- vₖ .= v₊₁
264- wₖ .= w₊₁
264+ vₖ .= v₊₁
265+ wₖ .= w₊₁
265266
266267 # k-th off-diagonal elements
267268 buf = wₖ * vₖ
268- δₖ = sqrt (abs (buf))
269- βₖ = buf / δₖ
269+ δₖ = sqrt (abs (buf))
270+ βₖ = buf / δₖ
270271
271272 # Normalize (k+1)-th left/right vectors
272273 vₖ ./= δₖ
@@ -288,7 +289,7 @@ function _spectrum(
288289 # Restore the norm
289290 lanczosFactor .= gfNorm .* lanczosFactor
290291
291- return - 2 .* real ( lanczosFactor )
292+ return - 2 .* real (lanczosFactor)
292293end
293294
294295@doc raw """
0 commit comments