diff --git a/src/correlations.jl b/src/correlations.jl index cbec3da95..efc9fcaa2 100644 --- a/src/correlations.jl +++ b/src/correlations.jl @@ -23,7 +23,7 @@ ExponentialSeries(; tol = 1e-14, calc_steadystate = false) = ExponentialSeries(t c_ops::Union{Nothing,AbstractVector,Tuple}=nothing; kwargs...) -Returns the two-times correlation function of three operators ``\hat{A}``, ``\hat{B}`` and ``\hat{C}``: ``\expval{\hat{A}(t) \hat{B}(t + \tau) \hat{C}(t)}`` +Returns the two-times correlation function of three operators ``\hat{A}``, ``\hat{B}`` and ``\hat{C}``: ``\left\langle \hat{A}(t) \hat{B}(t + \tau) \hat{C}(t) \right\rangle`` for a given initial state ``\ket{\psi_0}``. """ @@ -69,9 +69,9 @@ end kwargs...) Returns the two-times correlation function of two operators ``\hat{A}`` and ``\hat{B}`` -at different times: ``\expval{\hat{A}(t + \tau) \hat{B}(t)}``. +at different times: ``\left\langle \hat{A}(t + \tau) \hat{B}(t) \right\rangle``. -When `reverse=true`, the correlation function is calculated as ``\expval{\hat{A}(t) \hat{B}(t + \tau)}``. +When `reverse=true`, the correlation function is calculated as ``\left\langle \hat{A}(t) \hat{B}(t + \tau) \right\rangle``. """ function correlation_2op_2t( H::QuantumObject{<:AbstractArray{T1},HOpType}, @@ -111,9 +111,9 @@ end reverse::Bool=false, kwargs...) -Returns the one-time correlation function of two operators ``\hat{A}`` and ``\hat{B}`` at different times ``\expval{\hat{A}(\tau) \hat{B}(0)}``. +Returns the one-time correlation function of two operators ``\hat{A}`` and ``\hat{B}`` at different times ``\left\langle \hat{A}(\tau) \hat{B}(0) \right\rangle``. -When `reverse=true`, the correlation function is calculated as ``\expval{\hat{A}(0) \hat{B}(\tau)}``. +When `reverse=true`, the correlation function is calculated as ``\left\langle \hat{A}(0) \hat{B}(\tau) \right\rangle``. """ function correlation_2op_1t( H::QuantumObject{<:AbstractArray{T1},HOpType}, @@ -149,7 +149,7 @@ end Returns the emission spectrum ```math -S(\omega) = \int_{-\infty}^\infty \expval{\hat{A}(\tau) \hat{B}(0)} e^{-i \omega \tau} d \tau +S(\omega) = \int_{-\infty}^\infty \left\langle \hat{A}(\tau) \hat{B}(0)} e^{-i \omega \tau \right\rangle d \tau ``` """ function spectrum( diff --git a/src/metrics.jl b/src/metrics.jl index 0e2e5fd24..879d9ea7d 100644 --- a/src/metrics.jl +++ b/src/metrics.jl @@ -8,7 +8,7 @@ export entropy_vn, entanglement, tracedist, fidelity entropy_vn(ρ::QuantumObject; base::Int=0, tol::Real=1e-15) Calculates the [Von Neumann entropy](https://en.wikipedia.org/wiki/Von_Neumann_entropy) -``S = - \Tr \left[ \hat{\rho} \log \left( \hat{\rho} \right) \right]`` where ``\hat{\rho}`` +``S = - \textrm{Tr} \left[ \hat{\rho} \log \left( \hat{\rho} \right) \right]`` where ``\hat{\rho}`` is the density matrix of the system. The `base` parameter specifies the base of the logarithm to use, and when using the default value 0, diff --git a/src/qobj/functions.jl b/src/qobj/functions.jl index 1cc463913..846316881 100644 --- a/src/qobj/functions.jl +++ b/src/qobj/functions.jl @@ -10,7 +10,7 @@ export vec2mat, mat2vec @doc raw""" ket2dm(ψ::QuantumObject) -Transform the ket state ``\ket{\psi}`` into a pure density matrix ``\hat{\rho} = \dyad{\psi}``. +Transform the ket state ``\ket{\psi}`` into a pure density matrix ``\hat{\rho} = |\psi\rangle\langle\psi|``. """ ket2dm(ψ::QuantumObject{<:AbstractArray{T},KetQuantumObject}) where {T} = ψ * ψ' diff --git a/src/qobj/operators.jl b/src/qobj/operators.jl index b2036dce7..ccb989dee 100644 --- a/src/qobj/operators.jl +++ b/src/qobj/operators.jl @@ -408,7 +408,7 @@ sigmay() = rmul!(jmat(0.5, Val(:y)), 2) @doc raw""" sigmaz() -Pauli operator ``\hat{\sigma}_z = \comm{\hat{\sigma}_+}{\hat{\sigma}_-}``. +Pauli operator ``\hat{\sigma}_z = \left[ \hat{\sigma}_+ , \hat{\sigma}_- \right]``. See also [`jmat`](@ref). """ @@ -487,7 +487,7 @@ end @doc raw""" projection(N::Int, i::Int, j::Int) -Generates the projection operator ``\hat{O} = \dyad{i}{j}`` with Hilbert space dimension `N`. +Generates the projection operator ``\hat{O} = |i \rangle\langle j|`` with Hilbert space dimension `N`. """ projection(N::Int, i::Int, j::Int) = QuantumObject(sparse([i + 1], [j + 1], [1.0 + 0.0im], N, N), type = Operator)