@@ -60,11 +60,11 @@ Jz = 1.0
6060hx = 0.0
6161γ = 1
6262
63- Sx = mapreduce(i->MultiSiteOperator (latt, i => sigmax()), +, 1:latt.N)
64- Sy = mapreduce(i->MultiSiteOperator (latt, i => sigmay()), +, 1:latt.N)
65- Sz = mapreduce(i->MultiSiteOperator (latt, i => sigmaz()), +, 1:latt.N)
63+ Sx = mapreduce(i->multisite_operator (latt, i => sigmax()), +, 1:latt.N)
64+ Sy = mapreduce(i->multisite_operator (latt, i => sigmay()), +, 1:latt.N)
65+ Sz = mapreduce(i->multisite_operator (latt, i => sigmaz()), +, 1:latt.N)
6666
67- SFxx = sum([MultiSiteOperator (latt, i => sigmax()) * MultiSiteOperator (latt, j => sigmax()) for i in 1:latt.N for j in 1:latt.N])
67+ SFxx = sum([multisite_operator (latt, i => sigmax()) * multisite_operator (latt, j => sigmax()) for i in 1:latt.N for j in 1:latt.N])
6868
6969H, c_ops = DissipativeIsing(Jx, Jy, Jz, hx, 0., 0., γ, latt; boundary_condition=:periodic_bc, order=1)
7070e_ops = (Sx, Sy, Sz, SFxx)
@@ -99,13 +99,13 @@ The remaining `M-1` states are taken as those with minimal Hamming distance from
9999i = 1
100100for j in 1:N_modes
101101 global i += 1
102- i <= M && (ϕ[i] = MultiSiteOperator (latt, j=>sigmap()) * ϕ[1])
102+ i <= M && (ϕ[i] = multisite_operator (latt, j=>sigmap()) * ϕ[1])
103103end
104104
105105for k in 1:N_modes-1
106106 for l in k+1:N_modes
107107 global i += 1
108- i <= M && (ϕ[i] = MultiSiteOperator (latt, k=>sigmap(), l=>sigmap()) * ϕ[1])
108+ i <= M && (ϕ[i] = multisite_operator (latt, k=>sigmap(), l=>sigmap()) * ϕ[1])
109109 end
110110end
111111```
0 commit comments