Skip to content

Commit 43dd84b

Browse files
committed
update slides, add tipr
1 parent db18471 commit 43dd84b

29 files changed

+887
-181
lines changed

exercises/08-tipr.Rmd

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
---
2+
title: "Tipping Point Sensitivity Analyses"
3+
output: html_document
4+
---
5+
6+
7+
```{r}
8+
library(tipr)
9+
```
10+
11+
Using the National Health and Nutrition Examination Survey Data (`nhefs_complete`), we are interested in the relationship between the **exposure**, `qsmk`: whether the participant quit smoking, and the **outcome**, `wt82_71`: their weight change in kilograms.
12+
13+
## Your turn
14+
15+
Use the `lm_tip()` function to conduct a sensitivity analysis for the estimate from your previous exercises.
16+
17+
```{r}
18+
19+
```
20+

slides/03-pscores.Rmd

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
title: "Propensity Scores"
33
author: "Lucy D'Agostino McGowan"
44
institute: "Wake Forest University"
5-
date: "2020-07-29 (updated: `r Sys.Date()`)"
5+
date: "2021-09-01 (updated: `r Sys.Date()`)"
66
output:
77
xaringan::moon_reader:
88
css: ["default", "theme.css"]
@@ -193,7 +193,7 @@ class: inverse
193193

194194
## Your turn
195195

196-
`r countdown::countdown(minutes = 7)`
196+
`r countdown::countdown(minutes = 10)`
197197

198198
1. Using the **confounders** identified in the previous DAG, fit a propensity score model for `qsmk`
199199
2. Stretch: Create two histograms, one of the propensity scores for those that quit smoking and one for those that do not

slides/03-pscores.html

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@
44
<title>Propensity Scores</title>
55
<meta charset="utf-8" />
66
<meta name="author" content="Lucy D’Agostino McGowan" />
7-
<script src="libs/header-attrs/header-attrs.js"></script>
8-
<link href="libs/remark-css/default.css" rel="stylesheet" />
9-
<link href="libs/countdown/countdown.css" rel="stylesheet" />
10-
<script src="libs/countdown/countdown.js"></script>
7+
<script src="libs/header-attrs-2.10/header-attrs.js"></script>
8+
<link href="libs/remark-css-0.0.1/default.css" rel="stylesheet" />
9+
<link href="libs/countdown-0.3.5/countdown.css" rel="stylesheet" />
10+
<script src="libs/countdown-0.3.5/countdown.js"></script>
1111
<link rel="stylesheet" href="theme.css" type="text/css" />
1212
</head>
1313
<body>
@@ -17,7 +17,7 @@
1717
# Propensity Scores
1818
### Lucy D’Agostino McGowan
1919
### Wake Forest University
20-
### 2020-07-29 (updated: 2020-12-01)
20+
### 2021-09-01 (updated: 2021-08-06)
2121

2222
---
2323

@@ -168,8 +168,8 @@
168168

169169
## Your turn
170170

171-
<div class="countdown" id="timer_5fc6bbc4" style="right:0;bottom:0;" data-warnwhen="0">
172-
<code class="countdown-time"><span class="countdown-digits minutes">07</span><span class="countdown-digits colon">:</span><span class="countdown-digits seconds">00</span></code>
171+
<div class="countdown" id="timer_610d8094" style="right:0;bottom:0;" data-warnwhen="0">
172+
<code class="countdown-time"><span class="countdown-digits minutes">10</span><span class="countdown-digits colon">:</span><span class="countdown-digits seconds">00</span></code>
173173
</div>
174174

175175
1. Using the **confounders** identified in the previous DAG, fit a propensity score model for `qsmk`
-16.9 KB
Loading

slides/04-using-pscores.Rmd

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
title: "Using Propensity Scores"
33
author: "Lucy D'Agostino McGowan"
44
institute: "Wake Forest University"
5-
date: "2020-12-02 (updated: `r Sys.Date()`)"
5+
date: "2021-09-01 (updated: `r Sys.Date()`)"
66
output:
77
xaringan::moon_reader:
88
css: ["default", "theme.css"]
@@ -236,7 +236,7 @@ class: inverse
236236

237237
## Your Turn
238238

239-
`r countdown::countdown(minutes = 7)`
239+
`r countdown::countdown(minutes = 10)`
240240

241241
1. Using the propensity scores you created in the previous exercise, create a "matched" data set using the ATM method with a caliper of 0.2.
242242

@@ -438,7 +438,7 @@ class: inverse
438438

439439
## Your Turn
440440

441-
`r countdown::countdown(minutes = 7)`
441+
`r countdown::countdown(minutes = 10)`
442442

443443
1. Using the propensity scores you created in the previous exercise, add the ATE weights to your data frame `df`
444444

slides/04-using-pscores.html

Lines changed: 148 additions & 148 deletions
Large diffs are not rendered by default.
57 Bytes
Loading
57 Bytes
Loading
57 Bytes
Loading
57 Bytes
Loading

0 commit comments

Comments
 (0)