@@ -2541,7 +2541,7 @@ def lstsq(a, b, rcond=None):
2541
2541
return wrap (x ), wrap (resids ), rank , s
2542
2542
2543
2543
2544
- def _multi_svd_norm (x , row_axis , col_axis , op , initial ):
2544
+ def _multi_svd_norm (x , row_axis , col_axis , op , initial = None ):
2545
2545
"""Compute a function of the singular values of the 2-D matrices in `x`.
2546
2546
2547
2547
This is a private utility function used by `numpy.linalg.norm()`.
@@ -2765,7 +2765,7 @@ def norm(x, ord=None, axis=None, keepdims=False):
2765
2765
if ord == inf :
2766
2766
return abs (x ).max (axis = axis , keepdims = keepdims , initial = 0 )
2767
2767
elif ord == - inf :
2768
- return abs (x ).min (axis = axis , keepdims = keepdims , initial = inf )
2768
+ return abs (x ).min (axis = axis , keepdims = keepdims )
2769
2769
elif ord == 0 :
2770
2770
# Zero norm
2771
2771
return (
@@ -2799,7 +2799,7 @@ def norm(x, ord=None, axis=None, keepdims=False):
2799
2799
if ord == 2 :
2800
2800
ret = _multi_svd_norm (x , row_axis , col_axis , amax , 0 )
2801
2801
elif ord == - 2 :
2802
- ret = _multi_svd_norm (x , row_axis , col_axis , amin , inf )
2802
+ ret = _multi_svd_norm (x , row_axis , col_axis , amin )
2803
2803
elif ord == 1 :
2804
2804
if col_axis > row_axis :
2805
2805
col_axis -= 1
@@ -2811,11 +2811,11 @@ def norm(x, ord=None, axis=None, keepdims=False):
2811
2811
elif ord == - 1 :
2812
2812
if col_axis > row_axis :
2813
2813
col_axis -= 1
2814
- ret = add .reduce (abs (x ), axis = row_axis ).min (axis = col_axis , initial = inf )
2814
+ ret = add .reduce (abs (x ), axis = row_axis ).min (axis = col_axis )
2815
2815
elif ord == - inf :
2816
2816
if row_axis > col_axis :
2817
2817
row_axis -= 1
2818
- ret = add .reduce (abs (x ), axis = col_axis ).min (axis = row_axis , initial = inf )
2818
+ ret = add .reduce (abs (x ), axis = col_axis ).min (axis = row_axis )
2819
2819
elif ord in [None , 'fro' , 'f' ]:
2820
2820
ret = sqrt (add .reduce ((x .conj () * x ).real , axis = axis ))
2821
2821
elif ord == 'nuc' :
0 commit comments