|
| 1 | +--- |
| 2 | +title: "Challenging Testing Problems" |
| 3 | +output: rmarkdown::html_vignette |
| 4 | +vignette: > |
| 5 | + %\VignetteIndexEntry{Challenging Testing Problems} |
| 6 | + %\VignetteEngine{knitr::rmarkdown} |
| 7 | + %\VignetteEncoding{UTF-8} |
| 8 | +--- |
| 9 | + |
| 10 | +```{r, include = FALSE} |
| 11 | +knitr::opts_chunk$set( |
| 12 | + collapse = TRUE, |
| 13 | + comment = "#>" |
| 14 | +) |
| 15 | +``` |
| 16 | + |
| 17 | +```{r setup} |
| 18 | +library(testthat) |
| 19 | +``` |
| 20 | + |
| 21 | +Testing is easy when your functions are pure: they take some inputs and return predictable outputs. But real-world code often involves randomness, external state, graphics, user interaction, and other challenging elements. This vignette provides practical solutions for testing these tricky scenarios. |
| 22 | + |
| 23 | +## Output Affected by RNG |
| 24 | + |
| 25 | +Random number generation can make tests non-deterministic. Use `withr::local_seed()` to ensure reproducible results within your tests. |
| 26 | + |
| 27 | +### The Problem |
| 28 | + |
| 29 | +```{r, eval = FALSE} |
| 30 | +# This test will randomly pass or fail |
| 31 | +test_that("random sample has expected properties", { |
| 32 | + x <- sample(1:100, 10) |
| 33 | + expect_length(x, 10) |
| 34 | + expect_true(all(x %in% 1:100)) |
| 35 | + # This might fail randomly: |
| 36 | + expect_equal(x[1], 42) |
| 37 | +}) |
| 38 | +``` |
| 39 | + |
| 40 | +### The Solution |
| 41 | + |
| 42 | +```{r} |
| 43 | +test_that("random sample has expected properties", { |
| 44 | + withr::local_seed(123) |
| 45 | + x <- sample(1:100, 10) |
| 46 | + expect_length(x, 10) |
| 47 | + expect_true(all(x %in% 1:100)) |
| 48 | + # This will always pass now: |
| 49 | + expect_equal(x[1], 31) |
| 50 | +}) |
| 51 | +``` |
| 52 | + |
| 53 | +For functions that internally use random numbers: |
| 54 | + |
| 55 | +```{r} |
| 56 | +simulate_data <- function(n) { |
| 57 | + rnorm(n, mean = 0, sd = 1) |
| 58 | +} |
| 59 | +
|
| 60 | +test_that("simulate_data returns correct structure", { |
| 61 | + withr::local_seed(456) |
| 62 | + result <- simulate_data(5) |
| 63 | + expect_length(result, 5) |
| 64 | + expect_type(result, "double") |
| 65 | + # Test specific values with fixed seed |
| 66 | + expect_equal(result[1], 1.048, tolerance = 0.001) |
| 67 | +}) |
| 68 | +``` |
| 69 | + |
| 70 | +## Output Affected by External State |
| 71 | + |
| 72 | +Tests should be isolated from global options, environment variables, and other external state that might affect behavior. |
| 73 | + |
| 74 | +### Global Options |
| 75 | + |
| 76 | +```{r} |
| 77 | +# Function that depends on global options |
| 78 | +format_number <- function(x) { |
| 79 | + format(x, digits = getOption("digits")) |
| 80 | +} |
| 81 | +
|
| 82 | +test_that("format_number respects digits option", { |
| 83 | + # Save and restore the original option |
| 84 | + withr::local_options(digits = 3) |
| 85 | + expect_equal(format_number(pi), "3.14") |
| 86 | + |
| 87 | + withr::local_options(digits = 5) |
| 88 | + expect_equal(format_number(pi), "3.1416") |
| 89 | +}) |
| 90 | +``` |
| 91 | + |
| 92 | +### Environment Variables |
| 93 | + |
| 94 | +```{r} |
| 95 | +# Function that depends on environment variables |
| 96 | +get_api_url <- function() { |
| 97 | + Sys.getenv("API_URL", default = "https://api.example.com") |
| 98 | +} |
| 99 | +
|
| 100 | +test_that("get_api_url uses environment variable", { |
| 101 | + withr::local_envvar(API_URL = "https://test-api.example.com") |
| 102 | + expect_equal(get_api_url(), "https://test-api.example.com") |
| 103 | +}) |
| 104 | +
|
| 105 | +test_that("get_api_url uses default when env var not set", { |
| 106 | + withr::local_envvar(API_URL = NA) |
| 107 | + expect_equal(get_api_url(), "https://api.example.com") |
| 108 | +}) |
| 109 | +``` |
| 110 | + |
| 111 | +### Working Directory |
| 112 | + |
| 113 | +```{r} |
| 114 | +test_that("function works in different directories", { |
| 115 | + withr::local_dir(tempdir()) |
| 116 | + # Test code that depends on working directory |
| 117 | + writeLines("test content", "temp_file.txt") |
| 118 | + expect_true(file.exists("temp_file.txt")) |
| 119 | + # File will be cleaned up automatically |
| 120 | +}) |
| 121 | +``` |
| 122 | + |
| 123 | +## Graphical Output |
| 124 | + |
| 125 | +Testing plots and other graphical output requires specialized tools. The [vdiffr](https://vdiffr.r-lib.org/) package provides visual regression testing for ggplot2 and base R graphics. |
| 126 | + |
| 127 | +### Setting Up vdiffr |
| 128 | + |
| 129 | +```{r, eval = FALSE} |
| 130 | +# In your test file |
| 131 | +library(vdiffr) |
| 132 | +
|
| 133 | +test_that("plot looks correct", { |
| 134 | + p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() |
| 135 | + expect_doppelganger("basic scatterplot", p) |
| 136 | +}) |
| 137 | +``` |
| 138 | + |
| 139 | +### Base R Graphics |
| 140 | + |
| 141 | +```{r, eval = FALSE} |
| 142 | +test_that("base R plot is correct", { |
| 143 | + expect_doppelganger("base histogram", function() { |
| 144 | + hist(rnorm(100), main = "Normal Distribution") |
| 145 | + }) |
| 146 | +}) |
| 147 | +``` |
| 148 | + |
| 149 | +The first time you run these tests, vdiffr will create reference images. Subsequent runs will compare against these references and flag any visual differences. |
| 150 | + |
| 151 | +## Errors and User-Facing Text |
| 152 | + |
| 153 | +Error messages, warnings, and other user-facing text should be tested to ensure they're helpful and consistent. Snapshots are perfect for this. |
| 154 | + |
| 155 | +### Testing Error Messages |
| 156 | + |
| 157 | +```{r} |
| 158 | +divide_positive <- function(x, y) { |
| 159 | + if (y <= 0) { |
| 160 | + stop("Divisor must be positive, got: ", y) |
| 161 | + } |
| 162 | + x / y |
| 163 | +} |
| 164 | +
|
| 165 | +test_that("divide_positive gives helpful error", { |
| 166 | + expect_snapshot_error(divide_positive(10, -2)) |
| 167 | + expect_snapshot_error(divide_positive(10, 0)) |
| 168 | +}) |
| 169 | +``` |
| 170 | + |
| 171 | +### Testing Warnings |
| 172 | + |
| 173 | +```{r} |
| 174 | +maybe_warn <- function(x) { |
| 175 | + if (x < 0) { |
| 176 | + warning("Negative value detected: ", x) |
| 177 | + } |
| 178 | + abs(x) |
| 179 | +} |
| 180 | +
|
| 181 | +test_that("maybe_warn produces expected warning", { |
| 182 | + expect_snapshot(maybe_warn(-5)) |
| 183 | +}) |
| 184 | +``` |
| 185 | + |
| 186 | +### Testing Complex Output |
| 187 | + |
| 188 | +```{r} |
| 189 | +summarize_data <- function(x) { |
| 190 | + cat("Summary of data:\n") |
| 191 | + cat("Length:", length(x), "\n") |
| 192 | + cat("Mean:", mean(x), "\n") |
| 193 | + cat("Range:", range(x), "\n") |
| 194 | +} |
| 195 | +
|
| 196 | +test_that("summarize_data output is correct", { |
| 197 | + expect_snapshot(summarize_data(1:10)) |
| 198 | +}) |
| 199 | +``` |
| 200 | + |
| 201 | +## HTTP Responses |
| 202 | + |
| 203 | +Testing code that makes HTTP requests requires mocking to avoid external dependencies. Use httr2 mocking for httr2-based code, or httptest2 for httr-based code. |
| 204 | + |
| 205 | +### With httr2 |
| 206 | + |
| 207 | +```{r, eval = FALSE} |
| 208 | +library(httr2) |
| 209 | +
|
| 210 | +get_user_info <- function(user_id) { |
| 211 | + req <- request("https://api.example.com") |> |
| 212 | + req_url_path_append("users", user_id) |
| 213 | + resp <- req_perform(req) |
| 214 | + resp_body_json(resp) |
| 215 | +} |
| 216 | +
|
| 217 | +test_that("get_user_info handles successful response", { |
| 218 | + # Mock the HTTP response |
| 219 | + with_mocked_responses( |
| 220 | + request("https://api.example.com/users/123") |> |
| 221 | + req_method("GET") |> |
| 222 | + mock_response( |
| 223 | + status_code = 200, |
| 224 | + body = '{"id": 123, "name": "Alice"}' |
| 225 | + ), |
| 226 | + { |
| 227 | + result <- get_user_info(123) |
| 228 | + expect_equal(result$id, 123) |
| 229 | + expect_equal(result$name, "Alice") |
| 230 | + } |
| 231 | + ) |
| 232 | +}) |
| 233 | +``` |
| 234 | + |
| 235 | +### With httptest2 |
| 236 | + |
| 237 | +```{r, eval = FALSE} |
| 238 | +library(httptest2) |
| 239 | +
|
| 240 | +test_that("API call works", { |
| 241 | + with_mock_api({ |
| 242 | + # httptest2 will look for mock files in tests/testthat/api.example.com/ |
| 243 | + result <- get_user_info(123) |
| 244 | + expect_equal(result$id, 123) |
| 245 | + }) |
| 246 | +}) |
| 247 | +``` |
| 248 | + |
| 249 | +## Interactivity |
| 250 | + |
| 251 | +Interactive functions that prompt for user input need mocking to work in automated tests. |
| 252 | + |
| 253 | +### Mocking User Input |
| 254 | + |
| 255 | +```{r} |
| 256 | +ask_yes_no <- function(question) { |
| 257 | + response <- readline(paste0(question, " (y/n): ")) |
| 258 | + tolower(response) %in% c("y", "yes") |
| 259 | +} |
| 260 | +
|
| 261 | +test_that("ask_yes_no handles yes response", { |
| 262 | + mockery::stub(ask_yes_no, "readline", "y") |
| 263 | + expect_true(ask_yes_no("Continue?")) |
| 264 | +}) |
| 265 | +
|
| 266 | +test_that("ask_yes_no handles no response", { |
| 267 | + mockery::stub(ask_yes_no, "readline", "n") |
| 268 | + expect_false(ask_yes_no("Continue?")) |
| 269 | +}) |
| 270 | +``` |
| 271 | + |
| 272 | +### Mocking File Selection |
| 273 | + |
| 274 | +```{r} |
| 275 | +read_user_file <- function() { |
| 276 | + file_path <- file.choose() |
| 277 | + readLines(file_path) |
| 278 | +} |
| 279 | +
|
| 280 | +test_that("read_user_file works with mocked file selection", { |
| 281 | + temp_file <- tempfile() |
| 282 | + writeLines(c("line 1", "line 2"), temp_file) |
| 283 | + |
| 284 | + mockery::stub(read_user_file, "file.choose", temp_file) |
| 285 | + result <- read_user_file() |
| 286 | + |
| 287 | + expect_equal(result, c("line 1", "line 2")) |
| 288 | + unlink(temp_file) |
| 289 | +}) |
| 290 | +``` |
| 291 | + |
| 292 | +## Testing Many Combinations |
| 293 | + |
| 294 | +When you need to test many parameter combinations, use helper functions and loops to avoid repetitive code. |
| 295 | + |
| 296 | +### Using Helper Functions |
| 297 | + |
| 298 | +```{r} |
| 299 | +# Function to test |
| 300 | +power_function <- function(x, n) { |
| 301 | + if (n < 0) stop("Negative exponents not supported") |
| 302 | + if (x == 0 && n == 0) stop("0^0 is undefined") |
| 303 | + x^n |
| 304 | +} |
| 305 | +
|
| 306 | +# Helper function for testing |
| 307 | +test_power <- function(x, n, expected) { |
| 308 | + test_that(paste0("power_function(", x, ", ", n, ") equals ", expected), { |
| 309 | + expect_equal(power_function(x, n), expected) |
| 310 | + }) |
| 311 | +} |
| 312 | +
|
| 313 | +# Test many combinations |
| 314 | +test_power(2, 3, 8) |
| 315 | +test_power(5, 2, 25) |
| 316 | +test_power(10, 0, 1) |
| 317 | +test_power(-3, 2, 9) |
| 318 | +``` |
| 319 | + |
| 320 | +### Using Loops for Systematic Testing |
| 321 | + |
| 322 | +```{r} |
| 323 | +test_that("power_function works for multiple bases and exponents", { |
| 324 | + test_cases <- data.frame( |
| 325 | + x = c(2, 3, 4, 5), |
| 326 | + n = c(2, 2, 2, 2), |
| 327 | + expected = c(4, 9, 16, 25) |
| 328 | + ) |
| 329 | + |
| 330 | + for (i in seq_len(nrow(test_cases))) { |
| 331 | + expect_equal( |
| 332 | + power_function(test_cases$x[i], test_cases$n[i]), |
| 333 | + test_cases$expected[i], |
| 334 | + info = paste("Failed for x =", test_cases$x[i], "n =", test_cases$n[i]) |
| 335 | + ) |
| 336 | + } |
| 337 | +}) |
| 338 | +``` |
| 339 | + |
| 340 | +### Property-Based Testing |
| 341 | + |
| 342 | +```{r} |
| 343 | +test_that("power_function satisfies mathematical properties", { |
| 344 | + # Test that x^0 = 1 for any non-zero x |
| 345 | + for (x in c(-10, -1, 1, 2, 10, 100)) { |
| 346 | + expect_equal(power_function(x, 0), 1, |
| 347 | + info = paste("x^0 should equal 1 for x =", x)) |
| 348 | + } |
| 349 | + |
| 350 | + # Test that x^1 = x for any x |
| 351 | + for (x in c(-5, 0, 1, 7, 100)) { |
| 352 | + expect_equal(power_function(x, 1), x, |
| 353 | + info = paste("x^1 should equal x for x =", x)) |
| 354 | + } |
| 355 | +}) |
| 356 | +``` |
| 357 | + |
| 358 | +### Testing Edge Cases Systematically |
| 359 | + |
| 360 | +```{r} |
| 361 | +test_that("power_function handles edge cases correctly", { |
| 362 | + # Test error conditions |
| 363 | + error_cases <- list( |
| 364 | + list(x = 5, n = -1, pattern = "Negative exponents"), |
| 365 | + list(x = 0, n = 0, pattern = "0\\^0 is undefined") |
| 366 | + ) |
| 367 | + |
| 368 | + for (case in error_cases) { |
| 369 | + expect_error( |
| 370 | + power_function(case$x, case$n), |
| 371 | + case$pattern, |
| 372 | + info = paste("Expected error for x =", case$x, "n =", case$n) |
| 373 | + ) |
| 374 | + } |
| 375 | +}) |
| 376 | +``` |
| 377 | + |
| 378 | +## Best Practices |
| 379 | + |
| 380 | +1. **Isolate tests**: Use `withr` functions to ensure tests don't affect each other |
| 381 | +2. **Make tests deterministic**: Control randomness with seeds |
| 382 | +3. **Test the interface**: Focus on testing user-facing behavior, not implementation details |
| 383 | +4. **Use appropriate tools**: Choose the right mocking/testing approach for your specific challenge |
| 384 | +5. **Document complex setups**: Add comments explaining why specific mocking or setup is needed |
| 385 | +6. **Keep tests fast**: Mock external dependencies to avoid network calls and file I/O when possible |
| 386 | + |
| 387 | +By addressing these challenging scenarios systematically, you can build confidence that your code works correctly under all conditions your users might encounter. |
0 commit comments