Skip to content

[Bug] Dynamic Filtering Data Precision Error #570

@Django-Jiang

Description

@Django-Jiang
def check_reward_nonzero_std(args, samples: list[Sample], **kwargs):
    rewards = [sample.get_reward_value(args) for sample in samples]
    keep = torch.tensor(rewards, dtype=torch.float).std() > 0.0
    return DynamicFilterOutput(
        keep=keep,
        reason=None if keep else f"zero_std_{round(rewards[0], 1)}",
    )

There will be a floating-point precision issue, when the reward is Non-0/1 cases.

For example,

torch.tensor([0.1]*16, dtype=torch.float).std() > 0.0
>tensor(True)

torch.tensor([0.25]*16, dtype=torch.float).std() > 0.0
>tensor(False)

torch.tensor([0.1]*16, dtype=torch.float64).std() > 0.0
>tensor(False)

torch.tensor([0.1]*1024, dtype=torch.float64).std() > 0.0
>tensor(True)

Suggest using higher precision and a small epsilon for comparision

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions